首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Within the Murinae (Muridae: Rodentia), the African rats of the Praomys group, whose systematics has been studied through different approaches, have raised numerous taxonomic problems. Different taxa related to Praomys have successively been described, among which Mastomys, Myomys and Hylomyscus were considered either as separate genera or subgenera of Praomys. In order to clarify the relationships within the Praomys group, we conducted a series of DNA/DNA hybridization experiments involving different species of Praomys, Mastomys, Myomys and Hylomyscus plus other Murinae and a Cricetomyinae. This study indicates that the Praomys complex is a monophyletic entity clearly separated from the other African and Asian Murinae. If Mastomys and Hylomyscus appeared to be independent genera, the taxonomic situation of Praomys and Myomys is more difficult to ascertain. Indeed, Praomys tullbergi appears more closely related to Myomys daltoni than to another species of Praomys , namely P. jacksoni , suggesting paraphyly for Praomys. Furthermore, P. jacksoni is as distant from P. tullbergi as from any species of Mastomys. Additional species of Praomys and, especially, of Myomys , are needed for reaching a definitive conclusion on these latter taxa. The Praomys group is more related to Mus than to Rattus. To calibrate our molecular distances with geological time, we used a dating of 10 Myr for the Musi Rattus dichotomy. The inferred rate of molecular evolution suggests a dating of c. 8 Myr for the separation of the Praomys group from the Mus lineage.  相似文献   

2.
Representatives of the genus Praomys occur throughout the African intertropical zone. It is unclear how many species this genus contains, nor do we know the exact distribution ranges and phylogenetic relationships of these taxa. Using molecular (16S rRNA gene sequencing) and morphological (multivariate craniometry) analyses we clarify the taxonomy and phylogenetic relationships among the Praomys occurring in Africa's lowland tropical rainforests. We studied most species known from this area, based on specimens collected in seven countries (Guinea, Ivory Coast, Cameroon, Central African Republic, Gabon, Congo Republic and Democratic Republic of Congo). In our study, Praomys appears to be monophyletic. Our results identify two species complexes: the jacksoni complex includes at least two species ( P. jacksoni and P. mutoni ) and the tullbergi complex contains at least four species ( P. tullbergi , P. rostratus , P. misonnei , P. petteri ). Although the 16S rRNA gene appears insufficient to resolve the phylogenetic relationships among all the members of the tullbergi species complex, it is suitable for the identification of most of the studied species, and its use has allowed us to redefine the geographical limits of several species.  © 2005 The Linnean Society of London, Zoological Journal of the Linnean Society , 2005, 145 , 539–553.  相似文献   

3.
Among the African Murinae (Rodentia, Muridae), the Praomys complex, whose systematics has been studied by different approaches, has raised numerous taxonomic problems. Different taxa, namely Praomys, Mastomys , Myomys and Hylomyscus have been considered either as separate genera or subgenera of Praomys . In order to understand the relationships within the Praomys complex and to test the monophyly of the genus Praomys , a cladistic analysis was conducted, based on morpho-anatomical factors involving different species of Praomys , Mastomys , Myomys and Hylomyscus. The results indicate that the Praomys complex is monophyletic, as are the genera Hylomyscus , Mastomys and Myomys , whereas the genus Praomys appears paraphyletic. Indeed, a group of species including Praomys jacksoni was found to be more closely related to the genera Mastomys and Myomys than to a Praomys tullbergi -group. The biotopes and the distribution areas of the species were mapped on the phylogeny. It appears that the different clades each present a relative ecological cohesion and are arranged according to a gradient from closed to open habitats. From there, an evolutionary scenario is proposed for the emergence of the different clades and species of the genus Praomys sensu stricto.  相似文献   

4.
The species-specific profile and centromeric heterochromatin localization of satellite DNA in mammalian genomes imply that satellite DNA may play an important role in mammalian karyotype evolution and speciation. A satellite III DNA family, CCsatIII was thought to be specific to roe deer (Capreolus capreolus). In this study, however, this satellite DNA family was found also to exist in Chinese water deer (Hydropotes inermis) by PCR-Southern screening. A satellite III DNA element of this species was then generated from PCR-cloning by amplifying this satellite element using primer sequences from the roe deer satellite III clone (CCsatIII). The newly generated satellite III DNA along with previously obtained satellite I and II DNA clones were used as probes for FISH studies to investigate the genomic distribution and organization of these three satellite DNA families in centromeric heterochromatin regions of Chinese water deer chromosomes. Satellite I and II DNA were observed in the pericentric/centric regions of all chromosomes, whereas satellite III was distributed on 38 out of 70 chromosomes. The distribution and orientation of satellite DNAs I, II and III in the centromeric heterochromatin regions of the genome were further classified into four different types. The existence of a Capreolus-like satellite III in Chinese water deer implies that satellite III is not specific to the genus Capreolus (Buntjer et al., 1998) and supports the molecular phylogeny classification of Randi et al. (1998) which suggests that Chinese water deer and roe deer are closely related.  相似文献   

5.
Whole-comparative genomic hybridization (W-CGH) has been used to exemplify a simple methodology which allows identifying and mapping whole genome differences for highly repetitive DNA sequences between two related species of unknown genomic background. The use of this technique to the species binomy Arcyptera fusca/Arcyptera tornosi has allowed the identification of different DNA families mainly concentrated within the para-/peri-centromeric and distal heterochromatic regions of different chromosomes, which are differentially expanded in both genomes. Additionally, W-CGH allowed chromosome mapping of particular euchromatic regions immersed in the chromosome arms which have been affected by processes of DNA amplification and losses. A molecular approach was also conducted to analyse satellite DNA families in these species. We have found three different families showing an unequal representation in both species. Two of these families showed a centromeric location (EcoRV-390CEN and Sau3A-419CEN), whereas the last one was located at distal heterochromatic regions (Sau3A-197TEL). As A. fusca is a widely distributed species represented in most European high mountains, whereas A. tornosi is an endemic species represented in the Iberian Peninsula, the differences and resemblances reported here offer a good basis to support a close evolutionary relationship between both of the actually isolated species. Finally, W-CGH allowed identification of an asynchronic pattern of heterochromatin condensation through early prophase (characteristic in both species) which is uncommon or probably has been poorly analysed within classical early condensing chromosome domains through meiosis. The congruence of the obtained cytological and molecular results is analysed in light of the ancestral genome relationship between both species.  相似文献   

6.
7.
Evidence of extensive chromosomal evolution in a biologically and economically important group of African murids of the Praomys/Mastomys complex was provided by examination of G- and C-band chromosomal data on P. coucha (2n = 32), P. fumatus (2n = 38), P. hildebrandti (2n = 32), P. jacksoni (2n = 28), P. misonnei (2n = 36), and P. cf. tullbergi (2n = 35). A coding system was developed for the chromosomal characters, and analyses were performed by a computer program to find the shortest tree with a minimum of 35 autosomal rearrangements (pericentric inversions, complex translocations, centric fusions, centric fissions, tandem fusions, euchromatic additions, and heterochromatic additions). The resulting phylogenetic hypothesis differs from traditionally accepted hypotheses regarding this complex group of rodents. The cytogenetic data show that 1) there is no support for the dichotomy of Mastomys/Praomys previously based on morphology, 2) the 2n = 32 species from eastern Africa (P. hildebrandti) is distinct from the 2n = 32 species from southern Africa (P. natalensis), and 3) there is a close association between P. jacksoni and P. cf. tullbergi. Polyacrylamide gel electrophoresis of liver membrane proteins demonstrated few differences in protein mobilities between species and even fewer between individuals of the same species taken from different habitats and localities in Kenya. Monoclonal antibodies produced against liver proteins of one species and tested for reactivity to other species confirmed the evolutionary similarity of species of this complex. This immunologic approach may provide a robust data set for future phylogenetic studies of muroid rodents.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Most species of the genus Tripogandra (Commelinaceae) are taxonomically poorly circumscribed, in spite of having a relatively stable basic number x = 8. Aiming to estimate the cytological variation among Tripogandra species carrying this base number, several structural karyotypic characters were investigated in the diploid T. glandulosa, the hexaploid T. serrulata, and the octoploid T. diuretica. A careful evaluation of chromosome size and morphology did not reveal clear chromosome homeologies among karyotypes. The mean chromosome size was strongly reduced in the octoploid species, but not in the hexaploid species. They also differed largely in the CMA(+) banding pattern and in the number of 5S and 45S rDNA sites per monoploid chromosome complement. All three species showed proximal DAPI (+) heterochromatin, although in T. serrulata this kind of heterochromatin was only visible after FISH. Further, the meiosis in T. serrulata was highly irregular, suggesting that this species has a hybrid origin. The data indicate that, in spite of the conservation of the base number, these species are karyologically quite different from each other.  相似文献   

9.
10.
Transposable elements are DNA sequences present in all the large phylogenetic groups, both capable of changing position within the genome and constituting a significant part of eukaryotic genomes. The mariner family of transposons is one of the few which occurs in a wide variety of taxonomic groups, including freshwater planarians. Nevertheless, so far only five planarian species have been reported to carry mariner-like elements (MLEs), although several different species have been investigated. Regarding the number of copies of MLEs, Girardia tigrina is the only planarian species in which this has been evaluated, with an estimation of 8,000 copies of the element per haploid genome. Preliminary results obtained in our laboratory demonstrated that MLE is found in a large number of different species of planarians, including terrestrial. With this in mind, the aim was to evaluate the occurrence and estimate the number of MLE copies in different planarian species collected in south Brazil. Twenty-eight individuals from 15 planarian species were analyzed. By using PCR and the hybridization of nucleic acids, it was found that MLE was present in all the analyzed species, the number of copies being high, probably over 10(3) per haploid genome.  相似文献   

11.
12.
The helix-hairpin-helix (HhH) superfamily of base excision repair DNA glycosylases is composed of multiple phylogenetically diverse enzymes that are capable of excising varying spectra of oxidatively and methyl-damaged bases. Although these DNA repair glycosylases have been widely studied through genetic, biochemical, and biophysical approaches, the evolutionary relationships of different HhH homologs and the extent to which they are conserved across phylogeny remain enigmatic. We provide an evolutionary framework for this pervasive and versatile superfamily of DNA glycosylases. Six HhH gene families (named AlkA: alkyladenine glycosylase; MpgII: N-methylpurine glycosylase II; MutY/Mig: A/G-specific adenine glycosylase/mismatch glycosylase; Nth: endonuclease III; OggI: 8-oxoguanine glycosylase I; and OggII: 8-oxoguanine glycosylase II) are identified through phylogenetic analysis of 234 homologs found in 94 genomes (16 archaea, 64 bacteria, and 14 eukaryotes). The number of homologs in each gene family varies from 117 in the Nth family (nearly every genome surveyed harbors at least one Nth homolog) to only five in the divergent OggII family (all from archaeal genomes). Sequences from all three domains of life are included in four of the six gene families, suggesting that the HhH superfamily diversified very early in evolution. The phylogeny provides evidence for multiple lineage-specific gene duplication events, most of which involve eukaryotic homologs in the Nth and AlkA gene families. We observe extensive variation in the number of HhH superfamily glycosylase genes present in different genomes, possibly reflecting major differences among species in the mechanisms and pathways by which damaged bases are repaired and/or disparities in the basic rates and spectra of mutation experienced by different genomes.  相似文献   

13.

Background and Aims

The cultivated jute species Corchorus olitorius and Corchorus capsularis are important fibre crops. The analysis of repetitive DNA sequences, comprising a major part of plant genomes, has not been carried out in jute but is useful to investigate the long-range organization of chromosomes. The aim of this study was the identification of repetitive DNA sequences to facilitate comparative molecular and cytogenetic studies of two jute cultivars and to develop a fluorescent in situ hybridization (FISH) karyotype for chromosome identification.

Methods

A plasmid library was generated from C. olitorius and C. capsularis with genomic restriction fragments of 100–500 bp, which was complemented by targeted cloning of satellite DNA by PCR. The diversity of the repetitive DNA families was analysed comparatively. The genomic abundance and chromosomal localization of different repeat classes were investigated by Southern analysis and FISH, respectively. The cytosine methylation of satellite arrays was studied by immunolabelling.

Key Results

Major satellite repeats and retrotransposons have been identified from C. olitorius and C. capsularis. The satellite family CoSat I forms two undermethylated species-specific subfamilies, while the long terminal repeat (LTR) retrotransposons CoRetro I and CoRetro II show similarity to the Metaviridea of plant retroelements. FISH karyotypes were developed by multicolour FISH using these repetitive DNA sequences in combination with 5S and 18S–5·8S–25S rRNA genes which enable the unequivocal chromosome discrimination in both jute species.

Conclusions

The analysis of the structure and diversity of the repeated DNA is crucial for genome sequence annotation. The reference karyotypes will be useful for breeding of jute and provide the basis for karyotyping homeologous chromosomes of wild jute species to reveal the genetic and evolutionary relationship between cultivated and wild Corchorus species.  相似文献   

14.
Although heterochromatin makes up a significant portion of the malaria mosquito genome, its organization, function, and evolution are poorly understood. Sibling species of the Anopheles maculipennis subgroup, the European malaria mosquitoes, are characterized by striking differences in the morphology of pericentric heterochromatin; however, the molecular basis for the rapid evolutionary transformation of heterochromatin is not known. This study reports an initial survey of the molecular organization of the pericentric heterochromatin in nonmodel species from the A. maculipennis subgroup. Molecular identity and chromosomal localization were established for short DNA fragments obtained by microdissection from the pericentric diffuse β-heterochromatin of A. atroparvus. Among 102 sequenced clones of the Atr2R library, twenty had sequence similarity to transposable elements (TEs) from the Anopheles gambiae and Aedes aegypti genomes. At least six protein-coding single-copy genes from A. gambiae and four single-copy genes from Drosophila melanogaster were homologous to eight clones from the library. Most of these conserved genes were heterochromatic in A. gambiae but euchromatic in D. melanogaster. The remaining 74 clones were characterized as noncoding repetitive DNA. Comparative chromosome mapping of twelve clones in the sibling species A. atroparvus and A. messeae demonstrated that the noncoding repetitive sequences and the TEs have undergone independent chromosome-specific and species-specific gains and losses in the morphologically different pericentric heterochromatic regions, in accordance with the “library model.”  相似文献   

15.
Whirling disease, caused by the pathogen Myxobolus cerebralis, leads to skeletal deformation, neurological impairment and under certain conditions, mortality of juvenile salmonid fishes. The disease has impacted the propagation and survival of many salmonid species over six continents, with particularly negative consequences for rainbow trout. To assess the genetic basis of whirling disease resistance in rainbow trout, genome-wide mapping was initiated using a large outbred F(2) rainbow trout family (n=480) and results were confirmed in three additional outbred F(2) families (n=96 per family). A single quantitative trait locus (QTL) region on chromosome Omy9 was identified in the large mapping family and confirmed in all additional families. This region explains 50-86% of the phenotypic variance across families. Therefore, these data establish that a single QTL region is capable of explaining a large percentage of the phenotypic variance contributing to whirling disease resistance. This is the first genetic region discovered that contributes directly to the whirling disease phenotype and the finding moves the field closer to a mechanistic understanding of resistance to this important disease of salmonid fish.  相似文献   

16.
Background and Aims Some plant groups, especially on islands, have been shaped by strong ancestral bottlenecks and rapid, recent radiation of phenotypic characters. Single molecular markers are often not informative enough for phylogenetic reconstruction in such plant groups. Whole plastid genomes and nuclear ribosomal DNA (nrDNA) are viewed by many researchers as sources of information for phylogenetic reconstruction of groups in which expected levels of divergence in standard markers are low. Here we evaluate the usefulness of these data types to resolve phylogenetic relationships among closely related Diospyros species.Methods Twenty-two closely related Diospyros species from New Caledonia were investigated using whole plastid genomes and nrDNA data from low-coverage next-generation sequencing (NGS). Phylogenetic trees were inferred using maximum parsimony, maximum likelihood and Bayesian inference on separate plastid and nrDNA and combined matrices.Key Results The plastid and nrDNA sequences were, singly and together, unable to provide well supported phylogenetic relationships among the closely related New Caledonian Diospyros species. In the nrDNA, a 6-fold greater percentage of parsimony-informative characters compared with plastid DNA was found, but the total number of informative sites was greater for the much larger plastid DNA genomes. Combining the plastid and nuclear data improved resolution. Plastid results showed a trend towards geographical clustering of accessions rather than following taxonomic species.Conclusions In plant groups in which multiple plastid markers are not sufficiently informative, an investigation at the level of the entire plastid genome may also not be sufficient for detailed phylogenetic reconstruction. Sequencing of complete plastid genomes and nrDNA repeats seems to clarify some relationships among the New Caledonian Diospyros species, but the higher percentage of parsimony-informative characters in nrDNA compared with plastid DNA did not help to resolve the phylogenetic tree because the total number of variable sites was much lower than in the entire plastid genome. The geographical clustering of the individuals against a background of overall low sequence divergence could indicate transfer of plastid genomes due to hybridization and introgression following secondary contact.  相似文献   

17.
Heterochromatin comprises a fraction of the genome usually with highly repeated DNA sequences and lacks of functional genes. This region can be revealed by using Giemsa C-banding, fluorochrome staining and cytomolecular tools. Some plant species are of particular interest through having a special type of heterochromatin denominated the cold-sensitive region (CSR). Independent of other chromosomal regions, when biological materials are subjected to low temperatures (about 0 °C), CSRs appear slightly stained and decondensed. In this study, we used Cestrum strigilatum (Solanaceae) to understand some aspects of CSR condensation associated with cytosine methylation levels, and to compare the behavior of different heterochromatin types of this species, when subjected to low temperatures.  相似文献   

18.
Large quantities of satellite DNA families (15%-25% of the genome) were found in the DNA of two species of parasitic wasps, Diadromus pulchellus and Eupelmus vuilleti. In both species the satellite DNA was found to consist wholly or largely of a single family unique to that species. Several clones of each family were obtained and sequenced. Palindromes in each consensus sequence suggest the formation in vivo of hairpin structures that may play a role in the mode of heterochromatin condensation in these insects. The ancestral repeating motifs were determined from the consensus sequences. Plausible scenarios are presented for the evolution of the two satellite DNAs. The occurrence of only one family of satellite DNAs in both species may indicate that, in male haploids, such families have shorter persistence times than necessary for the origins of new duplicated sequences.  相似文献   

19.
Members of subclass Copepoda are abundant, diverse, and—as a result of their variety of ecological roles in marine and freshwater environments—important, but their phylogenetic interrelationships are unclear. Recent studies of arthropods have used gene arrangements in the mitochondrial (mt) genome to infer phylogenies, but for copepods, only seven complete mt genomes have been published. These data revealed several within-order and few among-order similarities. To increase the data available for comparisons, we sequenced the complete mt genome (13,831 base pairs) of Amphiascoides atopus and 10,649 base pairs of the mt genome of Schizopera knabeni (both in the family Miraciidae of the order Harpacticoida). Comparison of our data to those for Tigriopus japonicus (family Harpacticidae, order Harpacticoida) revealed similarities in gene arrangement among these three species that were consistent with those found within and among families of other copepod orders. Comparison of the mt genomes of our species with those known from other copepod orders revealed the arrangement of mt genes of our Harpacticoida species to be more similar to that of Sinergasilus polycolpus (order Poecilostomatoida) than to that of T. japonicus. The similarities between S. polycolpus and our species are the first to be noted across the boundaries of copepod orders and support the possibility that mt-gene arrangement might be used to infer copepod phylogenies. We also found that our two species had extremely truncated transfer RNAs and that gene overlaps occurred much more frequently than has been reported for other copepod mt genomes.  相似文献   

20.

Background and Aims

Dendrobium species show tremendous morphological diversity and have broad geographical distribution. As repetitive sequence analysis is a useful tool to investigate the evolution of chromosomes and genomes, the aim of the present study was the characterization of repetitive sequences from Dendrobium moschatum for comparative molecular and cytogenetic studies in the related species Dendrobium aphyllum, Dendrobium aggregatum and representatives from other orchid genera.

Methods

In order to isolate highly repetitive sequences, a c0t-1 DNA plasmid library was established. Repeats were sequenced and used as probes for Southern hybridization. Sequence divergence was analysed using bioinformatic tools. Repetitive sequences were localized along orchid chromosomes by fluorescence in situ hybridization (FISH).

Key Results

Characterization of the c0t-1 library resulted in the detection of repetitive sequences including the (GA)n dinucleotide DmoO11, numerous Arabidopsis-like telomeric repeats and the highly amplified dispersed repeat DmoF14. The DmoF14 repeat is conserved in six Dendrobium species but diversified in representative species of three other orchid genera. FISH analyses showed the genome-wide distribution of DmoF14 in D. moschatum, D. aphyllum and D. aggregatum. Hybridization with the telomeric repeats demonstrated Arabidopsis-like telomeres at the chromosome ends of Dendrobium species. However, FISH using the telomeric probe revealed two pairs of chromosomes with strong intercalary signals in D. aphyllum. FISH showed the terminal position of 5S and 18S–5·8S–25S rRNA genes and a characteristic number of rDNA sites in the three Dendrobium species.

Conclusions

The repeated sequences isolated from D. moschatum c0t-1 DNA constitute major DNA families of the D. moschatum, D. aphyllum and D. aggregatum genomes with DmoF14 representing an ancient component of orchid genomes. Large intercalary telomere-like arrays suggest chromosomal rearrangements in D. aphyllum while the number and localization of rRNA genes as well as the species-specific distribution pattern of an abundant microsatellite reflect the genomic diversity of the three Dendrobium species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号