首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 669 毫秒
1.
α受体激动对绵羊心肌瞬时性内向离子流的影响   总被引:1,自引:0,他引:1  
施渭彬  徐有秋 《生理学报》1995,47(4):387-393
用乙酰毒毛旋花子甙元(AS)0.05μmol/L诱发绵羊心浦肯野纤维产生稳定的瞬时性内向离子流(Iti),用普萘洛尔0.5μmol/L阻断β受体,观察α受体激动剂苯肾上腺素(PE)0.3,1.0μmol/L对Iti幅值与时程的影响。PE1.0μmol/L灌流20,50min时Iti幅值分别由对照值12.8±1.9nA减小至10.7±1.2nA(n=5,P<0.05)与9.6±1.9nA(n=5,P<0.01);ItiD50时程分别由对照值145±24.4ms延长至183.3±28.1ms(n=5,P<0.05)与207.5±34.2ms(n=5,P<0.01),PE对Iti的抑制作用呈剂量依赖性与时间依赖性。Iti到达峰值的时间和回复到基线的时间都延长,提示PE作用下Iti通道动力学发生了变化。如果在β受体激动剂异丙肾上腺素(ISO)1.0μmol/L增强Iti的基础上,PE1.0μmol/L灌流10min,对Iti幅值的抑制及时程的延长作用更显著,Iti幅值由对照值15.6±3.2nA减小到10.3±2.2nA;ItiD50由92.5±14.3ms延长到132.5±36.0ms(n=5,P<0.01)。  相似文献   

2.
观察血管紧张素Ⅱ(AngⅡ)对心肌肌浆网Ca2+,Mg2+-ATPase基因(SERCA2a)转录调节的影响,评价DMP811对此效应的干预作用.6周龄雄性SD大鼠随机分为3组,每组6只.组1:生理盐水输注;组2:AngⅡ输注+DMP811管饲(3mg·d-1·kg-1);组3:AngⅡ输注(200ng·min-1·kg-1.1周后称其体重,取心脏并称重,提取心脏总RNA后采用Northernblot的方法检测SER-CA2a的转录水平,采用RT-PCR检测AngⅡ1型受体(AT1)mRNA水平.实验后,组3心重(CW)、心重/体重(C/B)、AT1受体转录水平均高于组1(分别增加4.7±0.4%,4.9±0.9%和24.7±3.5%;P<0.01),而SERCA2a基因转录水平显著低于组1(降低20.1±3.0%,P<0.01),并且SERCA2amRNA水平与AT1受体mRNA水平呈负相关(r=-0.74,P<0.01).AngⅡ导致的上述改变能被DMP811完全阻断.AngⅡ通过其Ⅰ型受体的介导,诱导了SERCA2a的转录下调  相似文献   

3.
本实验通过Pos免疫细胞化学、电生理及微量注射法对中缝隐核(NRO)的交感抑制作用的相关途径进行探讨。实验在成巴比妥钠或α-氯醛糖和氨基甲酸乙脂麻醉的Sprague-Dawley(SD)大鼠上进行。同时予以NRO,中脑导水管周围灰质背侧部(dPAG)方波脉冲串刺激,诱导中脑和延髓的c-Fos表达。刺激NRO过程中,基础血压升高(P<0.05),刺激dPAG引起的防御性升压反应则减少(P<0.01);中脑导水管周围灰质腹侧部(vPAG)、巨细胞旁外侧核(PGL)的Fos样免疫阳性反应(FLI)细胞计数分别为66.5±8.3和10.8±1.5(刺激NRO+dPAG组),较单独刺激dPAG组明显增加,P值分别小于0.01和0.001;单或双脉冲刺激中缝隐核在vPAG可以记录到相关单位,其中84%为兴奋单位,抑制单位占16%。双侧vPAG内微量注射利多卡因(每侧2μg/0.1μl),基础血压无明显变化,而刺激NRO引起的降压反应幅度减小(P<0.01),提示,延髓腹外侧区(VLM)、NRO存在不同功能分化的神经元;NRO可能有向vPAG的兴奋性投射,此投射可加强NRO的交感抑制效应。  相似文献   

4.
用正丁醇抽提,硫酸铵分级沉淀,DEAE-纤维素和SephacrylS-200柱层析,从南方鲇(Silurus meridionalis Chen)肠粘膜中提取出碱性磷酸酶(AKP)。提纯倍数为39.50倍,比活为68.35μ/mg蛋白,提取酶液经PAGE和SDS-PAGE只呈现一条区带。该酶的分子量为132140,N末端氨基酸为门冬氨酸,最适pH为10.10,7.5>pH>11.5时不稳定,最适温度为40℃左右,对热不很稳定,以磷酸苯二钠为底物其K_m值为1.72×10~(-3)mol/L。Mg~(2+)、Mn~(2+)为该酶的激活剂,KH_2PO_4、L-CyS、ME、DFP、EDTA-Na_2为抑制剂。选用KH_2PO_4和DFP作抑制类型的判断,结果表明,KH_2PO_4属竞争性掏剂,其抑制常数为2.3mmol/L;DFP为非竞争性抑制剂,抑制常数为1.05mmol/L。  相似文献   

5.
普通大鼠(SD)与低氧敏感大鼠(HS)经减压舱内模拟海拔5000m高度下3周低氧,观察到SD与HS的Hb有显著差异,前者高于后者(分别为27.3±0.6;24.5±0.8g%P<0.01)。此时SD血液中的PCO2已恢复正常,而HS血液中的PCO2却比SD血液中的PCO2低(分别为4.3±0.1;5.6±0.3kPaP<0.01)。在慢性低氧初期,HS的pH值比SD明显降低(分别为7.18±0.03;7.29±0.02,P<0.05)。但随着低氧时间延长HS的pH值很快上升并超过SD(分别为7.25±0.02;7.17±0.03P<0.05)。两者的血液氧没有明显差异。实验结果提示普通大鼠与低氧敏感大鼠对慢性低氧反应有不同的生理机制。  相似文献   

6.
目的探讨大鼠实验性肝癌发病中刺五加对肌体免疫功能和抗氧化酶活性的影响。方法46只SD雄性大鼠被随机分成对照组(喂普通饲料)、3-甲基4-双甲氨基偶氮苯(3-Me-DAB)组(喂含0.06%3Me-DAB饲料 10周)和刺五加组(饲喂同 3-Me-DAB外、另加入刺五加 4.5g/kg饲料,用常规方法检测全血谷光甘肽过氧化物酶(GSH-PX)、血清超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量,用微量化学发光造检测吞噬细胞活性(PMN-CL)。结果1.PMN-CL检测峰值、积分值和吞噬细胞指数,3-MeDAB组较正常组和刺五加组均有显著升高(P<0.05和P<0.01)2.全血GSH-PX活性、SOD活性,刺五加组较3-MeDAB组均有显著升高(P<0.05)。MDA含量刺五加组和3-MeDAB组均较正常组升高(均P<0.05)。结论刺五加在大鼠实验性肝癌诱发过程中有提高抗氧化酶活性和对抗致癌剂引起的机体中性粒细胞吞噬功能代偿性增高的作用。  相似文献   

7.
以时间、波数和相位三种方式对豚鼠的DPOAE潜伏期进行了测试,并就三者的关系进行了分析。得出了一组1,2,4,6kHz的D伏POAE潜伏期正常值,其中以时间方式测出的潜伏期分别为4.33,2.72,2.54,2.07ms三种潜伏期值是近似的,且随初始音频率的增加而缩短。根据耳蜗行波理论及DPOAE潜伏期时间、波数和相位形成的原理,三种方式的潜伏期之间存在着产生机制及换算关系上的联系,并得到了一组经验换算公式和常数。还探讨了潜伏期对研究耳蜗行波理论和DPOAE发生部位的意义,介绍了DPOAE潜伏期的测试方法和原理。  相似文献   

8.
丹皮酚对心肌细胞自律性和延迟后除极的影响   总被引:8,自引:0,他引:8  
目的与方法:采用常规玻璃微电极技术研究丹皮酚对离体心肌细胞自律性(AM)、延迟后除极(DAD) 及触发活动(TA)的影响。结果:1.8×10-4mol/L丹皮酚灌流组,肾上腺素(Adr)的阈浓度空白对照组为(1.28±0.57)μmol/L,药后为(1.56±0.53)μmol/L(n=9,P>0.05);用(1.8×10- 3) mol/L丹皮酚(Pae)灌流组,Adr 浓度由空白对照组的(1.22 ±0.62)μmol/L升高到(6.22±2.11)μmol/L(n=9,P<0.01)。1.8×10-3mol/L的Pae 能明显抑制哇巴因(Oua)诱发的DAD的幅值,当基本刺激周长为500,400,300 和200 ms 时,其DAD幅值从(5.5±2.0)mV,(7.3±2.1)mV,(8.0 ±2.4)mV和(9.2±1.9)mV减小到(3.0±1.1)mV、(3.6±1.7)mV,(4.3±2.0) mV和(5.9 ±1.6) mV,P<0.01。当基本刺激周长为200 ms时,TA 数目由5.5±1.0 降至0.7±0.3(P<0.01)。结论:丹皮酚能抑制心肌细胞AM、DAD及TA,具有抗心律失常作用  相似文献   

9.
本实验运用极谱式氧电极研究了噪声暴露对耳蜗鼓阶淋巴氧分压(STPO2)的影响以及STPO2的变化与听觉电生理、毛细胞损伤之间的关系。结果表明:(1)85dBSPL以上声刺激时STPO2迅速降低;85dBSPL窄带噪声暴露时STP02与血压一同缓慢增高;低于85dBSPL的声刺激则未能引起STP02和血压的改变。(2)STPO2降低约20%即伴随明显的听损伤;STPO2的变化程度与声暴露量(r=0.97,P<0.05)、听力损失(r=0.82,P<0.05)呈相关;与耳蜗病理改变也有一定关系,但与血压无明显相关性(r=0.21,P>0.2)。(3)声暴露时,吸入碳氧混合气对听力损失具有部分保护作用。  相似文献   

10.
用PEG沉淀法及DEAE─Sephacel离子交换层析和Sephacryls─300凝胶层析提纯的抗急非淋M_5型白血病单克隆抗体IA_1(M_cAb1A_1),纯度为99.9%。用葡聚糖作中间体将M_cAb_1A_1与柔红霉素(DNR)偶联,制备的免疫偶合物仍保持较好的抗体活性及药物活性。在48小时杀伤实验中,此偶合物对U_(937)靶细胞的杀伤作用与游离DNR相近(P>0.05),明显大于对照偶合物(P<0.01);在1小时预杀伤实验中,此偶合物对靶细胞的杀伤作用明显大于游离DNR及对照偶合物(P<0.01)。在两个实验中,此偶合物对Wish非靶细胞的毒性都明显小于游离DNR(P<0.01);表明此偶合物在体外具有较好的选择性细胞毒作用。  相似文献   

11.
This study presents the carbon footprint of a paperback book for which the cover and inside papers were produced in the United States and printed in Canada. The choice of paper mills for both cover and page papers was based on criteria such as percentage of recycled content in the pulp mix, transport distances (pulp mill to paper mill, paper mill to print), and technologies. The cradle‐to‐gate assessment of greenhouse gas (GHG) emissions follows recognized guidelines for carbon footprint assessment. The results show that the production of 400,000 books, mainly distributed in North America, would generate 1,084 tonnes carbon dioxide equivalent (CO2‐eq), or 2.71 kilograms (kg) CO2‐eq per book. The impact of using deinked market pulp (DMP) is shown here to be detrimental, accounting for 54% of total GHG emissions and being 32% higher than reference virgin Kraft pulp. This supports findings that DMP mill GHG emissions strongly correlate with the carbon intensity of the power grid supplying the pulp mill and that virgin Kraft mills that reuse wood residue and black liquor to produce heat and electricity can achieve lower GHG emissions per tonne of pulp produced. Although contrary to common thinking, this is consistent with the Paper Task Force 2002 conclusion for office paper (the closest paper grade to writing paper or fine paper) (EDF 2002a). To get a cradle‐to‐grave perspective, three different end‐of‐life (EOL) scenarios were analyzed, all of which included a harvested wood product (HWP) carbon storage benefit for 25 years. The GHG offset concept within the context of the book editor's “carbon‐neutral” paper claims is also discussed.  相似文献   

12.
This is the second part of a two‐article series examining California almond production. The part I article describes development of the analytical framework and life cycle–based model and presents typical energy use and greenhouse gas (GHG) emissions for California almonds. This part II article builds on this by exploring uncertainty in the life cycle model through sensitivity and scenario analysis, and by examining temporary carbon storage in the orchard. Sensitivity analysis shows life cycle GHG emissions are most affected by biomass fate and utilization, followed by nitrous oxide emissions rates from orchard soils. Model sensitivity for net energy consumption is highest for irrigation system parameters, followed by biomass fate and utilization. Scenario analysis shows utilization of orchard biomass for electricity production has the greatest potential effect, assuming displacement methods are used for co‐product allocation. Results of the scenario analysis show that 1 kilogram (kg) of almond kernel and associated co‐products are estimated to cause between ?3.12 to 2.67 kg carbon dioxide equivalent (CO2‐eq) emissions and consume between 27.6 to 52.5 megajoules (MJ) of energy. Co‐product displacement credits lead to avoided emissions of between ?1.33 to 2.45 kg CO2‐eq and between ?0.08 to 13.7 MJ of avoided energy use, leading to net results of ?1.39 to 3.99 kg CO2‐eq and 15.3 to 52.6 MJ per kg kernel (net results are calculated by subtracting co‐product credits from the results for almonds and co‐products). Temporary carbon storage in orchard biomass and soils is accounted for by using alternative global warming characterization factors and leads to a 14% to 18% reduction in CO2‐eq emissions. Future studies of orchards and other perennial cropping systems should likely consider temporary carbon storage.  相似文献   

13.
Volatile organic compounds (VOCs) have a direct bearing on the levels of ozone and other reactive chemicals in the atmosphere and play an important role in determining air quality Anthropogenic emission of VOCs has greatly increased due to growing consumption of fossil fuels and related activities. This article presents an emissions inventory for VOCs emitted from anthropogenic soutres in India. VOC emissions factors for important source categories and activities are assembled from the literature and an effort is made to use Indian emission factors as far as possible. Important sources of VOCs include livestock, combustion of firewood and fossil fuels, rice paddy fields, manufacturing. petroleum (production and refining), natural gas (production and distribution), vehicular exhaust, and coal mining. The annual anthropogenic VOC emissions for India have been estimated to be 21 million metric tons (mt). A comparison of VOC emissions inventories for a group of countries varying in their industrial and economic development, in terms of income (gross domestic product, or GDP), population, and land area, reflects the differences among the countries. This VOC emissions inventory provides baseline information for comparisons over time and across countries. In addition, it may serve as an important tool for formulating national VOC control policies.  相似文献   

14.
京津冀地区污染物排放与城市化过程的耦合关系   总被引:1,自引:0,他引:1  
陈向  周伟奇  韩立建  虞文娟 《生态学报》2016,36(23):7814-7825
我国快速的城市化发展不仅带来了经济的迅速发展和人口的大量聚集,同时也对资源和环境产生了巨大的影响。在城市化进程较为快速的城市群地区,城市化带来的生态环境胁迫尤为突出。以典型污染物为指标,定量研究了京津冀地区13个城市在2000年、2005年、2010年的工业和生活污染物的排放总量、人均排放量、排放效率、排放强度的时空特征,研究了经济发展与污染物排放的定量响应模式,以探讨污染物排放与城市化的耦合关系。研究发现:(1)京津冀地区的污染物排放空间分异特征显著,其中北京的生活污水、生活COD等污染物排放总量为地区内最高,唐山、天津、石家庄等城市的工业污染物排放高于其它城市。(2)北京、天津工业污染物的排放效率较高,人均排放量、排放强度低于其它城市。(3)2000—2010年间,京津冀地区的生活污水、工业废气、工业固废排放显著增加(P0.05),而其它生活和工业污染物排放量、排放效率和排放强度等呈显著下降趋势(P0.05)。(4)京津冀地区的工业废水、工业和生活SO2、生活烟尘、工业固废和工业废气等污染物的排放量与经济发展存在环境库兹涅兹曲线特征(R20.5,P0.05)。定量揭示了京津冀地区污染物排放的时空分布特征及其与城市化发展的关系,可为城市群区域污染物排放的管理及环境保护政策的制定提供科学参考。  相似文献   

15.
The objective of this study was to evaluate the nutritional and ecological aspects of feeding systems practiced under semi-arid environments in Jordan. Nine dairy farms representing the different dairy farming systems were selected for this study. Feed samples (n = 58), fecal samples (n = 108), and milk samples (n = 78) were collected from the farms and analysed for chemical composition. Feed samples were also analysed for metabolisable energy (ME) contents and in vitro organic matter digestibility according to Hohenheim-Feed-Test. Furthermore, fecal nitrogen concentration was determined to estimate in vivo organic matter digestibility. ME and nutrient intakes were calculated based on the farmer’s estimate of dry matter intake and the analysed composition of the feed ingredients. ME and nutrient intakes were compared to recommended standard values for adequate supply of ME, utilizable crude protein, rumen undegradable crude protein (RUCP), phosphorus (P), and calcium (Ca). Technology Impact Policy Impact Calculation model complemented with a partial life cycle assessment model was used to estimate greenhouse gas emissions of milk production at farm gate. The model predicts CH4, N2O and CO2 gases emitted either directly or indirectly. Average daily energy corrected milk yield (ECM) was 19 kg and ranged between 11 and 27 kg. The mean of ME intake of all farms was 184 MJ/d with a range between 115 and 225 MJ/d. Intake of RUCP was lower than the standard requirements in six farms ranging between 19 and 137 g/d, was higher (32 and 93 g/d) in two farms, and matched the requirements in one farm. P intake was higher than the requirements in all farms (mean oversupply = 19 g/d) and ranged between 3 and 30 g/d. Ca intake was significantly below the requirements in small scale farms. Milk nitrogen efficiency N-eff (milk N/intake N) varied between 19% and 28% and was mainly driven by the level of milk yield. Total CO2 equivalent (CO2 equ) emission ranged between 0.90 and 1.88 kg CO2/kg ECM milk, where the enteric and manure CH4 contributed to 52% of the total CO2 equ emissions, followed by the indirect emissions of N2O and the direct emissions of CO2 gases which comprises 17% and 15%, respectively, from total CO2 equ emissions. Emissions per kg of milk were significantly driven by the level of milk production (r2 = 0.93) and of eDMI (r2 = 0.88), while the total emissions were not influenced by diet composition. A difference of 16 kg ECM/d in milk yield, 9% in N-eff and of 0.9 kg CO2 equ/kg in ECM milk observed between low and high yielding animals. To improve the nutritional status of the animals, protein requirements have to be met. Furthermore, low price by-products with a low carbon credit should be included in the diets to replace the high proportion of imported concentrate feeds and consequently improve the economic situation of dairy farms and mitigate CO2 equ emissions.  相似文献   

16.
The mix of electricity consumed in any stage in the life cycle of a product, process, or industrial sector has a significant effect on the associated inventory of emissions and environmental impacts because of large differences in the power generation method used. Fossil‐fuel‐fired or nuclear‐centralized steam generators; large‐scale and small‐scale hydroelectric power; and renewable options, such as geothermal, wind, and solar power, each have a unique set of issues that can change the results of a life cycle assessment. This article shows greenhouse gas emissions estimates for electricity purchase for different scenarios using U.S. average electricity mix, state mixes, state mixes including imports, and a sector‐specific mix to show how different these results can be. We find that greenhouse gases for certain sectors and scenarios can change by more than 100%. Knowing this, practitioners should exercise caution or at least account for the uncertainty associated with mix choice.  相似文献   

17.
Combined MFA-LCA for Analysis of Wastewater Pipeline Networks   总被引:1,自引:0,他引:1  
Oslo's wastewater pipeline network has an aging stock of concrete, steel, and polyvinyl chloride (PVC) pipelines, which calls for a good portion of expenditures to be directed toward maintenance and investments in rehabilitation. The stock, as it is in 2008, is a direct consequence of the influx of pipelines of different sizes, lengths, and materials of construction into the system over the years. A material flow analysis (MFA) facilitates an analysis of the environmental impacts associated with the manufacture, installation, operation, maintenance, rehabilitation, and retirement of the pipelines. The forecast of the future flows of materials—which, again, is highly interlinked with the historic flows—provides insight into the likely future environmental impacts. This will enable decision makers keen on alleviating such impacts to think along the lines of eco-friendlier processes and technologies or simply different ways of doing business. Needless to say, the operation and maintenance phase accounts for the major bulk of emissions and calls for energy-efficient approaches to this phase of the life cycle, even as manufacturers strive to make their processes energy-efficient and attempt to include captive renewable energy in their total energy consumption. This article focuses on the life cycle greenhouse gas emissions associated with the wastewater pipeline network in the city of Oslo.  相似文献   

18.
To date the most common measures of environmental performance used to compare industries, and by extension firms or facilities, have been quantity of pollution emitted or hazardous waste generated. Discharge information, however, does not necessarily capture potential health effects. We propose an alternative environmental performance measure that includes the public health risks of toxic air emissions extended to industry supply chains using economic input-output life-cycle assessment. Cancer risk to the U.S. population was determined by applying a damage function to the Toxic Release Inventory (TRI) as modeled by CalTOX, a multimedia multipathway fate and exposure model. Risks were then translated into social costs using cancer willingness to pay. For a baseline emissions year of 1998, 260 excess cancer cases were calculated for 116 TRI chemicals, dominated by ingestion risk from polycyclic aromatic compounds and dioxins emitted by the primary aluminum and cement industries, respectively. The direct emissions of a small number of industry sectors account for most of the U.S. population cancer risk. For the majority of industry sectors, however, cancer risk per $1 million output is associated with supply chain upstream emissions. Ranking industries by total (direct + upstream) supply chain risk per economic output leads to different conclusions about the relative hazards associated with these industries than a conventional ranking based on emissions per economic output.  相似文献   

19.
Corn-ethanol production is expanding rapidly with the adoption of improved technologies to increase energy efficiency and profitability in crop production, ethanol conversion, and coproduct use. Life cycle assessment can evaluate the impact of these changes on environmental performance metrics. To this end, we analyzed the life cycles of corn-ethanol systems accounting for the majority of U.S. capacity to estimate greenhouse gas (GHG) emissions and energy efficiencies on the basis of updated values for crop management and yields, biorefinery operation, and coproduct utilization. Direct-effect GHG emissions were estimated to be equivalent to a 48% to 59% reduction compared to gasoline, a twofold to threefold greater reduction than reported in previous studies. Ethanol-to-petroleum output/input ratios ranged from 10:1 to 13:1 but could be increased to 19:1 if farmers adopted high-yield progressive crop and soil management practices. An advanced closed-loop biorefinery with anaerobic digestion reduced GHG emissions by 67% and increased the net energy ratio to 2.2, from 1.5 to 1.8 for the most common systems. Such improved technologies have the potential to move corn-ethanol closer to the hypothetical performance of cellulosic biofuels. Likewise, the larger GHG reductions estimated in this study allow a greater buffer for inclusion of indirect-effect land-use change emissions while still meeting regulatory GHG reduction targets. These results suggest that corn-ethanol systems have substantially greater potential to mitigate GHG emissions and reduce dependence on imported petroleum for transportation fuels than reported previously.  相似文献   

20.
New fuel regulations based on life cycle greenhouse gas (GHG) emissions have focused renewed attention on life cycle models of biofuels. The BESS model estimates 25% lower life cycle GHG emissions for corn ethanol than does the well-known GREET model, which raises questions about which model is more accurate. I develop a life cycle metamodel to compare the GREET and BESS models in detail and to explain why the results from these models diverge. I find two main reasons for the divergence: (1) BESS models a more efficient biorefinery than is modeled in the cases to which its results have been compared, and (2) in several instances BESS fails to properly count upstream emissions. Adjustments to BESS to account for these differences raise the estimated global warming intensity (not including land use change) of the corn ethanol pathway considered in that model from 45 to 61 g CO2e MJ−1. Adjusting GREET to use BESS's biorefinery performance and coproduct credit assumptions reduces the GREET estimate from 64 to 61 g CO2e MJ−1. Although this analysis explains the gap between the two models, both models would be improved with better data on corn production practices and by better treatment of agricultural inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号