首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 为探讨禁食和胰岛素对解偶联蛋白 - 1、2、3基因 (UCP1 ,2 ,3)表达的影响 ,应用 RT- PCR方法观察了在不同禁食时间和应用胰岛素条件下大鼠白色脂肪组织、棕色脂肪组织和骨骼肌中 UCP1 ,2 ,3m RNA水平的变化 .UCP1基因只在大鼠棕色脂肪组织中表达 .UCP2 ,3基因在三种组织中均有表达 ,在白色脂肪组织中以 UCP2表达为主 ;在骨骼肌中以 UCP3表达为主 .过夜禁食使棕色脂肪组织 UCP1 ,3m RNA水平明显下降 (P<0 .0 1 ) ;UCP2 m RNA水平在三种组织中均呈上升反应 ,以白色脂肪组织中表现最为明显 (P<0 .0 5) ;而对白色脂肪组织和骨骼肌中 UCP3基因表达无明显影响 .禁食时间延长至 48h,除棕色脂肪组织中 UCP2 ,3基因有明显下降外 ,各组织中UCPs基因表达基本调节至正常或高于对照组水平 .胰岛素对 UCPs基因表达水平有一定的上调作用 ,这一作用对棕色脂肪组织 UCPs各基因及骨骼肌中 UCP3基因表现得尤为明显 (P<0 .0 5) .大鼠 UCPs基因表达有一定的组织特异性 ;禁食时间对三种组织中 UCPs各成员基因表达的影响有时相上的区别 ;胰岛素可以调 UCPs各成员基因的表达 .结果反映了 UCPs各成员在能量代谢调节上的不同作用 ,这为理解膳食 -产热与体重调节的关系 ,及其能量代谢平衡与疾病关系提供了实验依据  相似文献   

2.
Mitochondrial inner membrane uncoupling proteins (UCP) catalyze a proton conductance that dissipates the proton electrochemical gradient established by the respiratory chain, thus affecting the yield of ATP synthesis. UCPs are involved in mitochondrial energy flow regulation and have been implicated in oxidative stress tolerance. Based on the global gene expression profiling datasets available for Arabidopsis thaliana, in this review we discuss the regulation of UCP gene expression during development and in response to stress, and provide interesting insights on the possible existence of epigenetic regulation of UCP expression.  相似文献   

3.
Frédéric Bouillaud 《BBA》2009,1787(5):377-4873
In mammals the two proteins UCP2 and UCP3 are highly similar to the mitochondrial uncoupling protein found in the brown adipose tissue (UCP1). Accordingly, it was proposed that UCP2 and UCP3 are also uncoupling proteins i.e. protonophores with impact on mitochondrial ROS production and glucose signaling. However, it appears now impossible to explain the physiological relevance of the new UCPs uniquely by their uncoupling activity as observed in vitro. Therefore, we propose a metabolic hypothesis in which UCP2 acts through a transport distinct of the proton transport. A consequence of this transport activity would be a decrease of the mitochondrial oxidation of the pyruvate originating from glucose. This would put UCP2 and UCP3 in a crucial position to influence cellular metabolism. The tight control exerted on UCP2 expression appears consistent with it. In this hypothesis, UCP2/3 would allow a cell to remain glycolytic within an aerobic organism. This tallies with the high expression level of UCP2 or UCP3 in glycolytic cells. The metabolic hypothesis would explain the spectacular modifications associated with UCP2 manipulation as well as the uncoupling activity usually called for and which in fact remains elusive in vivo.  相似文献   

4.
Enormous interest in mitochondrial uncoupling proteins (UCPs) is caused by relevant impact of these energy-dissipating systems on cellular energy transduction. A key role of UCPs in regulation of mitochondrial metabolism is supported by existence of their different isoforms in various mammalian tissues. Recent studies have shown that UCPs have an important part in pathogenesis of various disorders, such as obesity, type-2 diabetes, cachexia, aging or tumor. The obscure roles of UCPs in normal physiology and their emerging role in pathophysiology, provide exciting potential for further investigation. However, neither the exact physiological nor biochemical roles of UCP homologues are well understood. Therefore, providing mechanistic explanation of their functions in cellular physiology may be the basis for potential farmacological targeting of UCPs in future on clinical scale.  相似文献   

5.
Uncoupling proteins (UCPs) are a proton transporter family located in the mitochondrial inner membrane. Thus far, five molecules (UCP1–UCP5) have been identified as members of the UCP family. Recently, UCPs have attracted considerable interest in research on energy metabolism and obesity. However, to date, no study has focused on a comprehensive and systematic evaluation of the tissue-specific distribution of UCPs in obese individuals. Our study presents evidence of differential tissue expression profiles of five isoforms of UCPs in normal and diet-induced obese (DIO) rats using real-time polymerase chain reaction (PCR) analysis. The results clearly show that the tissue-specific expression patterns of individual isoforms between DIO and normal rats are quite distinct, which suggests a close relationship between the alterations in UCP expression and dietary obesity.  相似文献   

6.
SCHRAUWEN, PATRICK, KEN WALDER, AND ERIC RAVUSSIN. Human coupling proteins and obesity. Obes. Res. 1999;7:97–105. Uncoupling protein (UCP) 2 and UCP3 are newly discovered proteins that can uncouple ATP production from mitochondrial respiration, thereby dissipating energy as heat and affecting energy metabolism efficiency. In contrast to UCP1, which is only present in brown adipose tissue, UCP2 has a wide tissue distribution, whereas UCP3 is expressed predominantly in skeletal muscle. Some evidence of a role for UCPs in modulating metabolic rate was provided by linkage and association studies. Furthermore, UCP3 gene expression was found to correlate negatively with body mass index and positively with sleeping metabolic rate in Pima Indians. Treatment with thyroid hormone increases expression of the UCP2 and UCP3 genes. Other regulators of UCP2 and UCP3 gene expression are β3-adrenergic agonists and glucocorticoids. Surprisingly, fasting has a stimulatory effect on UCP2 and UCP3 mRNA levels, possibly explained by the effects of free fatty acid on UCP2 and UCP3 gene expression.  相似文献   

7.
Uncoupling proteins (UCPs) are specialized members of the mitochondrial transporter family. They allow passive proton transport through the mitochondrial inner membrane. This activity leads to uncoupling of mitochondrial respiration and to energy waste, which is well documented with UCP1 in brown adipose tissue. The uncoupling activity of the new UCPs (discovered after 1997), such as UCP2 and UCP3 in mammals or avUCP in birds, is more difficult to characterize. However, extensive data support the idea that the new UCPs are involved in the control of reactive oxygen species (ROS) generation. This fits with the hypothesis that mild uncoupling caused by the UCPs prevents ROS production. Activators and inhibitors regulate the proton transport activity of the UCPs. In the absence of activators of proton transport, the UCP allows the permeation of other ions. We suggest that this activity has physiological significance and, for example, UCP3 expressed in glycolytic muscle fibres may be a passive pyruvate transporter ensuring equilibrium between glycolysis and oxidative phosphorylation. Induction of UCP2 expression by glutamine strengthens the proposal that new UCPs could act to determine the choice of mitochondrial substrate. This would obviously have an impact on mitochondrial bioenergetics and ROS production.  相似文献   

8.
9.
The effects of 17beta‐estradiol (E2) are mediated through activation of estrogen receptors (ER): ERalpha and ERbeta. It is known that ERalpha/ERbeta ratio is higher in breast tumors than in normal tissue. Since antioxidant enzymes and uncoupling proteins (UCPs) are reactive oxygen species (ROS) production and mitochondrial biogenesis regulators, our aim was to study the E2‐effect on oxidative stress, antioxidant enzyme expression, and UCPs in breast cancer cell lines with different ERalpha/ERbeta ratios. The lower ERalpha/ERbeta ratio T47D cell line showed low ROS production and high UCP5 levels. However, the higher ERalpha/ERbeta ratio MCF‐7 cell line showed an up‐regulation of antioxidant enzymes and UCPs, yet exhibited high oxidative stress. As a result, a decrease in antioxidant enzyme activities and UCP2 protein levels, coupled with an increase in oxidative damage was found. On the whole, these results show different E2‐effects on oxidative stress regulation, modulating UCPs, and antioxidant enzymes, which were ERalpha/ERbeta ratio dependent in breast cancer cell lines. J. Cell. Biochem. 113: 3178–3185, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
11.
An increase in the cytoplasmic-free Ca(2+) concentration mediates cellular responses to environmental signals that influence a range of processes, including gene expression, motility, secretion of hormones and neurotransmitters, changes in energy metabolism, and apoptosis. Mitochondria play important roles in cellular Ca(2+) homeostasis and signaling, but the roles of specific mitochondrial proteins in these processes are unknown. Uncoupling proteins (UCPs) are a family of proteins located in the inner mitochondrial membrane that can dissociate oxidative phosphorylation from respiration, thereby promoting heat production and decreasing oxyradical production. Here we show that UCP4, a neuronal UCP, influences store-operated Ca(2+) entry, a process in which depletion of endoplasmic reticulum Ca(2+) stores triggers Ca(2+) influx through plasma membrane "store-operated" channels. PC12 neural cells expressing human UCP4 exhibit reduced Ca(2+) entry in response to thapsigargin-induced endoplasmic reticulum Ca(2+) store depletion. The elevations of cytoplasmic and intramitochondrial Ca(2+) concentrations and mitochondrial oxidative stress induced by thapsigargin were attenuated in cells expressing UCP4. The stabilization of Ca(2+) homeostasis and preservation of mitochondrial function by UCP4 was correlated with reduced mitochondrial reactive oxygen species generation, oxidative stress, and Gadd153 up-regulation and increased resistance of the cells to death. Reduced Ca(2+)-dependent cytosolic phospholipase A2 activation and oxidative metabolism of arachidonic acid also contributed to the stabilization of mitochondrial function in cells expressing human UCP4. These findings demonstrate that UCP4 can regulate cellular Ca(2+) homeostasis, suggesting that UCPs may play roles in modulating Ca(2+) signaling in physiological and pathological conditions.  相似文献   

12.
Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier protein family that are present in the mitochondrial inner membrane and mediate free fatty acid (FFA)-activated, purine nucleotide (PN)-inhibited proton conductance. Since 1999, the presence of UCPs has been demonstrated in some non-photosynthesising unicellular eukaryotes, including amoeboid and parasite protists, as well as in non-fermentative yeast and filamentous fungi. In the mitochondria of these organisms, UCP activity is revealed upon FFA-induced, PN-inhibited stimulation of resting respiration and a decrease in membrane potential, which are accompanied by a decrease in membranous ubiquinone (Q) reduction level. UCPs in unicellular eukaryotes are able to divert energy from oxidative phosphorylation and thus compete for a proton electrochemical gradient with ATP synthase. Our recent work indicates that membranous Q is a metabolic sensor that might utilise its redox state to release the PN inhibition of UCP-mediated mitochondrial uncoupling under conditions of phosphorylation and resting respiration. The action of reduced Q (QH2) could allow higher or complete activation of UCP. As this regulatory feature was demonstrated for microorganism UCPs (A. castellanii UCP), plant and mammalian UCP1 analogues, and UCP1 in brown adipose tissue, the process could involve all UCPs. Here, we discuss the functional connection and physiological role of UCP and alternative oxidase, two main energy-dissipating systems in the plant-type mitochondrial respiratory chain of unicellular eukaryotes, including the control of cellular energy balance as well as preventive action against the production of reactive oxygen species.  相似文献   

13.
Since the identification of the alternative angiotensin converting enzyme (ACE)2/Ang‐(1‐7)/Mas receptor axis, renin‐angiotensin system (RAS) is a new complex target for a pharmacological intervention. We investigated the expression of RAS components in the heart and kidney during the development of hypertension and its perinatal treatment with losartan in young spontaneously hypertensive rats (SHR). Expressions of RAS genes were studied by the RT‐PCR in the left ventricle and kidney of rats: normotensive Wistar, untreated SHR, SHR treated with losartan since perinatal period until week 9 of age (20 mg/kg/day) and SHR treated with losartan only until week 4 of age and discontinued until week 9. In the hypertrophied left ventricle of SHR, cardiac expressions of Ace and Mas were decreased while those of AT1 receptor (Agtr1a) and Ace2 were unchanged. Continuous losartan administration reduced LV weight (0.43 ± 0.02; P < 0.05 versus SHR) but did not influence altered cardiac RAS expression. Increased blood pressure in SHR (149 ± 2 in SHR versus 109 ± 2 mmHg in Wistar; P < 0.05) was associated with a lower renal expressions of renin, Agtr1a and Mas and with an increase in ACE2. Continuous losartan administration lowered blood pressure to control levels (105 ± 3 mmHg; P < 0.05 versus SHR), however, only renal renin and ACE2 were significantly up‐regulated (for both P < 0.05 versus SHR). Conclusively, prevention of hypertension and LV hypertrophy development by losartan was unrelated to cardiac or renal expression of Mas. Increased renal Ace2, and its further increase by losartan suggests the influence of locally generated Ang‐(1‐7) in organ response to the developing hypertension in SHRs.  相似文献   

14.
The uncoupling proteins (UCPs) leak protons across the inner mitochondrial membrane, thus uncoupling the proton gradient from ATP synthesis. The main known physiological role for this is heat generation by UCP1 in brown adipose tissue. However, UCPs are also believed to be important for protection against reactive oxygen species, fine-tuning of metabolism and have been suggested to be involved in disease states such as obesity, diabetes and cancer.Structural studies of UCPs have long been hampered by difficulties in sample preparation with neither expression in yeast nor refolding from inclusion bodies in E. coli yielding sufficient amounts of pure and stable protein. In this study, we have developed a protocol for cell-free expression of human UCP1, 2 and 3, resulting in 1 mg pure protein per 20 mL of expression media. Lauric acid, a natural UCP ligand, significantly improved protein thermal stability and was therefore added during purification. Secondary structure characterisation using circular dichroism spectroscopy revealed the proteins to consist of mostly α-helices, as expected. All three UCPs were able to bind GDP, a well-known physiological inhibitor, as shown by the Fluorescence Resonance Energy Transfer (FRET) technique, suggesting that the proteins are in a natively folded state.  相似文献   

15.
Uncoupling proteins (UCPs) located in the inner mitochondrial membrane are involved in the regulation of energy balance. Thus far, 5 UCP isoforms have been identified, but controversies exist in the research focused on the function of the UCPs (except UCP1) in the pathogenesis of obesity. Because of the known cross-reactivity of the antibodies presently available for the detection of UCP proteins, this study systematically analyzed the differential tissue expression profiles of the 5 UCP isoforms in lean control mice and ob/ob mice by using real-time polymerase chain reaction (PCR) analysis. The results show that the tissue-specific expression patterns of individual isoforms in normal and ob/ob mice are considerably different; this will provide new insights into the functions of UCPs in the pathogenesis of genetic obesity.  相似文献   

16.
17.
A 2 × 3 factorial study was conducted to evaluate the effects of dietary lipid level on mitochondrial gene expression in mixed sex rainbow trout Oncorhynchus mykiss. Practical diets with a fixed crude protein content of 42%, formulated to contain 10% (42/10), 20% (42/20) and 30% (42/30) dietary lipid, were fed to triplicate groups of either low‐feed efficient (F129; mean ± s.d. = 105·67 ± 3·04 g initial average mass) or high‐feed efficient (F134; mean ± s.d. = 97·86 ± 4·02 g) families of fish, to apparent satiety, twice per day, for 108 days. At the end of the experiment, diets 42/20 and 42/30 led to similar fish condition factors, which were higher than that observed with diet 42/10 (P < 0·05). F134 fish fed diet 42/10 showed the highest hepato‐somatic index, while there was no significant difference among all the other treatments (P < 0·05). When the group of F134 fish fed diet 42/10 was used as the calibrator for gene expression analysis, the five genes selected for their involvement in lipid metabolism (complex I‐nd1, complex III‐cytb, complex IV‐cox1, complex IV‐cox2 and complex V‐atp6) were up‐regulated in the muscle and down‐regulated in both the liver and the intestine. There was a significant family × diet interaction regarding nd1, cox2 and atp6 in the liver; nd1, cytb, cox1, cox2 and atp6 in the intestine, and nd1, cytb, cox1, cox2 and atp6 in the muscle (P < 0·05). The overall results of this study constitute basic information for the understanding of molecular mechanisms of lipid metabolism at the mitochondrial level in fishes.  相似文献   

18.
19.
Uncoupling proteins (UCPs) belong to the mitochondrial anion carrier protein family and mediate regulated proton leak across the inner mitochondrial membrane. Free fatty acids, aldehydes such as hydroxynonenal, and retinoids activate UCPs. However, there are some controversies about the effective action of retinoids and aldehydes alone; thus, only free fatty acids are commonly accepted positive effectors of UCPs. Purine nucleotides such as GTP inhibit UCP-mediated mitochondrial proton leak. In turn, membranous coenzyme Q may play a role as a redox state-dependent metabolic sensor that modulates the complete activation/inhibition of UCPs. Such regulation has been observed for UCPs in microorganisms, plant and animal UCP1 homologues, and UCP1 in mammalian brown adipose tissue. The origin of UCPs is still under debate, but UCP homologues have been identified in all systematic groups of eukaryotes. Despite the differing levels of amino acid/DNA sequence similarities, functional studies in unicellular and multicellular organisms, from amoebae to mammals, suggest that the mechanistic regulation of UCP activity is evolutionarily well conserved. This review focuses on the regulatory feedback loops of UCPs involving free fatty acids, aldehydes, retinoids, purine nucleotides, and coenzyme Q (particularly its reduction level), which may derive from the early stages of evolution as UCP first emerged.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号