首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host plant selection by ovipositing females is a key process determining the success of phytophagous insects. In oligophagous lepidopterans, host-specific plant secondary chemicals are expected to be dominant factors governing oviposition behavior; distinctive compounds can serve as high-contrast signals that clearly differentiate confamilial hosts from non-hosts increasing the accuracy of host quality evaluation. Agonopterix alstroemeriana (Clerk) (Lepidoptera: Oecophoridae) and Conium maculatum L. (Apiaceae) form an extremely specialized plant-herbivore system, with A. alstroemeriana monophagous on C. maculatum, a plant with few other insect herbivores at least in part due to its virtually unique capacity among plants to produce piperidine alkaloids. Here we have studied the response of A. alstroemeriana oviposition to unique host plant secondary metabolites, piperidine alkaloids, and widespread compounds, mono- and sesquiterpenes, in a concentration-dependent fashion. Rates of oviposition were negatively correlated with Z-ocimene concentrations. To confirm the deterrent properties of this monoterpene for A. alstroemeriana oviposition, we conducted a choice experiment using artificially damaged C. maculatum plants, with higher emission of volatiles, and undamaged control plants. Damaged plants were less preferred as oviposition sites compared to the controls. The lack of association between oviposition and piperidine alkaloids, defenses unique to Conium species, suggests that quantitative changes of these species-specific chemicals do not play a predominant role in host selection by the monophagous A. alstroemeriana.  相似文献   

2.
Solar ultraviolet-B radiation (UV-B) can have large impacts on the interactions between plants and herbivorous insects. Several studies have documented effects of UV-B-induced changes in plant tissue quality on the feeding performance of insect larvae. In contrast, the effects of UV-B-induced plant responses on the behavior of adult insects have received little attention. We carried out a series of field and glasshouse experiments using the model plant Arabidopsis thaliana L. and the crucifer-specialist insect Plutella xylostella L. (diamondback moth) to investigate the effects of UV-B on natural herbivory and plant–insect interactions. Natural herbivory under field conditions was less severe on plants exposed to ambient UV-B than on plants grown under filters that attenuated the UV-B component of solar radiation. This reduced herbivory could not be accounted for by effects of UV-B on larval feeding preference and performance, as P. xylostella caterpillars did not respond to changes in plant quality induced by UV-B. In contrast, at the adult stage, the insects presented clear behavioral responses: P. xylostella moths deposited significantly more eggs on plants grown under attenuated UV-B levels than on plants exposed to ambient UV-B. The deterring effect of UV-B exposure on insect oviposition was absent in jar1-1, a mutant with impaired jasmonic acid (JA) sensitivity, but it was conserved in mutants with altered ethylene signaling. The jar1-1 mutant also presented reduced levels of UV-absorbing phenolic compounds than the other genotypes that we tested. Our results suggest that variations in UV-B exposure under natural conditions can have significant effects on insect herbivory by altering plant traits that female adults use as sources of information during the process of host selection for oviposition. These effects of natural UV-B on plant quality appear to be mediated by activation of signaling circuits in which the defense-related hormone JA plays a functional role.  相似文献   

3.
Interactions among plants, plant‐feeding insects, and plant – pathogenic fungi are partially mediated by volatile compounds. Herbivorous insects use sensory cues to choose host plants for feeding and/or oviposition that are likely to support survival and development of progeny. It is known that some fungus‐induced alterations in plants can modify plant volatiles, which are recognized by the olfactory receptors of the insect, either as an attractant or as a deterrent. We tested for the presence of behaviour‐modifying volatiles emanating from the berries of Vitis vinifera L. (Vitaceae) infected with Botrytis cinerea Pers. (Helotiales). We tested the olfactory behaviour of adults of Epiphyas postvittana Walker (Lepidoptera: Tortricidae) to these volatiles using two‐choice and wind‐tunnel experiments. We hypothesized that olfactory cues influence E. postvittana's oviposition behaviour. We found that volatiles emanating from B. cinerea‐infected berries did not significantly attract the gravid females of E. postvittana; consequently, they laid significantly fewer eggs on infected berries. Furthermore, significantly fewer females of E. postvittana were found attracted to infected berries in the wind tunnel assay. Ethanol and 3‐methyl‐1‐butanol were abundant in B. cinerea‐infected berries. Oviposition assays made with laboratory standards of ethanol and 3‐methyl‐1‐butanol confirmed their role in regulating the olfactory behaviour of E. postvittana site selection.  相似文献   

4.
The preference–performance hypothesis predicts that female insects maximize their fitness by utilizing host plants which are associated with high larval performance. Still, studies with several insect species have failed to find a positive correlation between oviposition preference and larval performance. In the present study, we experimentally investigated the relationship between oviposition preferences and larval performance in the butterfly Anthocharis cardamines. Preferences were assessed using both cage experiments and field data on the proportion of host plant individuals utilized in natural populations. Larval performance was experimentally investigated using larvae descending from 419 oviposition events by 21 females on plants from 51 populations of two ploidy types of the perennial herb Cardamine pratensis. Neither ploidy type nor population identity influenced egg survival or larval development, but increased plant inflorescence size resulted in a larger final larval size. There was no correlation between female oviposition preference and egg survival or larval development under controlled conditions. Moreover, variation in larval performance among populations under controlled conditions was not correlated with the proportion of host plants utilized in the field. Lastly, first instar larvae added to plants rejected for oviposition by butterfly females during the preference experiment performed equally well as larvae growing on plants chosen for oviposition. The lack of a correlation between larval performance and oviposition preference for A. cardamines under both experimental and natural settings suggests that female host choice does not maximize the fitness of the individual offspring.  相似文献   

5.
Oviposition preference and several measures of offspring performance of Helicoverpa armigera (Hübner) were investigated on a subset of its host plants that were selected for their reputed importance in the field in Australia. They included cotton, pigeon pea, sweet corn, mungbean, bean and common sowthistle. Plants were at their flowering stage when presented to gravid female moths. Flowering pigeon pea evoked far more oviposition than did the other plant species and was the most preferred plant for neonate larval feeding. It also supported development of the most robust larvae and pupae, and these produced the most fecund moths. Common sowthistle and cotton were equally suitable to pigeon pea for larval development, but these two species received far fewer H. armigera eggs than did pigeon pea. Mungbean also received relatively few eggs, but it did support intermediate measures of larval growth and survival. Fewest eggs were laid on bean and it was also the least beneficial in terms of larval growth. Among the host plant species tested, only flowering pigeon pea supported a good relationship between oviposition preference of H. armigera and its subsequent offspring performance. Australian H. armigera moths are thus consistent with Indian H. armigera moths in their ovipositional behaviour and larval performance relative to pigeon pea. The results suggest that the host recognition and acceptance behaviour of this species is fixed across its geographical distribution and they support the theory that pigeon pea might be one of the primary host plants of this insect. These insights, together with published results on the sensory responses of the females to volatiles derived from the different host plant species tested here, help to explain why some plant species are primary targets for the ovipositing moths whereas others are only secondary targets of this polyphagous pest, which has a notoriously broad host range. Handling Editor: Joseph Dickens  相似文献   

6.
Thiéry D  Moreau J 《Oecologia》2005,143(4):548-557
The European grapevine moth, Lobesia botrana is a major grapevine pest, but despite the abundance of vineyards it is a generalist and uses either grapes or alternative species. Given the abundance and predictability of grape, L. botrana could be expected to have evolved towards monophagy. In order to understand why this species remains polyphagous, we hypothesized that larvae reared on rare wild host plants should have higher fitness than those reared on the more abundant grape host. For this, we compared larval performance and several life history traits on three alternative host plants (Daphne gnidium, Olea europaea, Tanacetum vulgare) and three Vitaceae (Vitis vinifera), two cultivars and one wild species (Ampelopsis brevipedunculata), and two control groups raised on either a low or a high nutritive value medium. Alternative hosts are more suitable than Vitaceae for the reproductive performance of L. botrana: larval mortality and development time was reduced, while pupal weight, growth rate, female longevity, female fecundity, duration of laying and mating success were increased. High quality food ingested by larvae promotes higher adult body weight and enhances female reproductive output. This suggests that alternative hosts provide greater nutritional value for L. botrana than Vitaceae. The use of alternative host plants could thus be maintained in the host range because they offer L. botrana a better fitness than on the Vitaceae. This could typically represent an advantage for moths behaving in plant diversity grape landscapes.  相似文献   

7.
Summary Plant resistance to insect herbivores may derive from traits influencing herbivore preference, traits influencing the suitability of the plant as a host, or both. However, the plant traits influencing host-plant selection by ovipositing insect herbivores may not completely overlap those traits that affect larval survival, and distinct traits may exhibit different levels of genetic vs. environmental control. Therefore, resource supply to the host plant could affect oviposition preference and larval performance differently in different plant genotypes. To test this hypothesis, the effects of resistance level, plant genotype, and resource supply to the host plant on oviposition preference and larval performance of a gallmaking herbivore, and on various plant traits that could influence these, were examined. Replicates of four genotypes of Solidago altissima, grown under low, medium, or high levels of nutrient supply in full sun or with medium levels of nutrients in shade, were exposed to mass-released Eurosta solidaginis. The number of plants ovipunctured was significantly affected by plant genotype and the interaction between genotype and nutrient supply to the host plant: one susceptible and one resistant genotype were more preferred, and preference tended to increase with nutrient supply in the more-preferred genotypes. The growth rate of ovipunctured plants during the oviposition period was significantly greater than that of unpunctured plants. Bud diameter (which was strongly correlated with plant growth rate), leaf area, and leaf water content were significant determinants of the percentage of plants ovipunctured, explaining 74% of the variance. The number of surviving larvae was significantly affected by plant genotype, but no effect of nutrient or light supply to the host plant was detected. The ratio of bud diameter to bud length was positively related to the percentage of ovipunctured plants that formed galls, suggesting that the accurate placement of eggs near the apical meristem by ovipositing females may be easier in short, thick buds. No significant correlation was observed between oviposition preference and larval survival at the population level. These results suggest that the plant traits affecting oviposition preference may exhibit different magnitudes of phenotypic plasticity than those affecting larval survival, and that the degree of phenotypic plasticity in plant traits affecting oviposition preference may differ among genotypes within a species.  相似文献   

8.
Cosme M  Stout MJ  Wurst S 《Mycorrhiza》2011,21(7):651-658
Root-feeding insects are important drivers in ecosystems, and links between aboveground oviposition preference and belowground larval performance have been suggested. The root-colonizing arbuscular mycorrhizal fungi (AMF) play a central role in plant nutrition and are known to change host quality for root-feeding insects. However, it is not known if and how AMF affect the aboveground oviposition of insects whose offspring feed on roots. According to the preference–performance hypothesis, insect herbivores oviposit on plants that will maximize offspring performance. In a greenhouse experiment with rice (Oryza sativa), we investigated the effects of AMF (Glomus intraradices) on aboveground oviposition of rice water weevil (Lissorhoptrus oryzophilus), the larvae of which feed belowground on the roots. Oviposition (i.e., the numbers of eggs laid by weevil females in leaf sheaths) was enhanced when the plants were colonized by AMF. However, the leaf area consumed by adult weevils was not affected. Although AMF reduced plant biomass, it increased nitrogen (N) and phosphorus concentrations in leaves and N in roots. The results suggest that rice water weevil females are able to discriminate plants for oviposition depending on their mycorrhizal status. The discrimination is probably related to AMF-mediated changes in plant quality, i.e., the females choose to oviposit more on plants with higher nutrient concentrations to potentially optimize offspring performance. AMF-mediated change in plant host choice for chewing insect oviposition is a novel aspect of below- and aboveground interactions.  相似文献   

9.
Divergent selection between environments can result in changes to the behavior of an organism. In many insects, volatile compounds are a primary means by which host plants are recognized and shifts in plant availability can result in changes to host preference. Both the plant substrate and microorganisms can influence this behavior, and host plant choice can have an impact on the performance of the organism. In Drosophila mojavensis, four geographically isolated populations each use different cacti as feeding and oviposition substrates and identify those cacti by the composition of the volatile odorants emitted. Behavioral tests revealed D. mojavensis populations vary in their degree of preference for their natural host plant. Females from the Mojave population show a marked preference for their host plant, barrel cactus, relative to other cactus choices. When flies were given a choice between cacti that were not their host plant, the preference for barrel and organ pipe cactus relative to agria and prickly pear cactus was overall lower for all populations. Volatile headspace composition is influenced by the cactus substrate, microbial community, and substrate‐by‐microorganism interactions. Differences in viability, developmental time, thorax length, and dry body weight exist among populations and depend on cactus substrate and population‐by‐cactus interactions. However, no clear association between behavioral preference and performance was observed. This study highlights a complex interplay between the insect, host plant, and microbial community and the factors mediating insect host plant preference behavior.  相似文献   

10.
Many insects face the challenge to select oviposition sites in heterogeneous environments where biotic and abiotic factors can change over time. One way to deal with this complexity is to use sensory experiences made during developmental stages to locate similar habitats or hosts in which larval development can be maximized. While various studies have investigated oviposition preference and larval performance relationships in insects, they have largely overlooked that sensory experiences made during the larval stage can affect such relationships. We addressed this issue by determining the role of natal experience on oviposition preference and larval performance relationships in a tritrophic system consisting of Galerucella sagittariae, feeding on the two host plants Potentilla palustris and Lysimachia thyrsiflora, and its larval parasitoid Asecodes lucens. We firstly determined whether differences in host‐derived olfactory information could lead to divergent host selection, and secondly, whether host preference could result in higher larval performance based on the natal origin of the insects. Our results showed that the natal origin and the quality of the current host are both important aspects in oviposition preference and larval performance relationships. While we found a positive relationship between preference and performance for natal Lysimachia beetles, natal Potentilla larvae showed no such relationship and developed better on L. thyrsiflora. Additionally, the host selection by the parasitoid was mainly affected by the natal origin, while its performance was higher on Lysimachia larvae. With this study, we showed that the relationship between oviposition preference and larval performance depends on the interplay between the natal origin of the female and the quality of the current host. However, without incorporating the full tritrophic context of these interactions, their implication in insect fitness and potential adaptation cannot be fully understood.  相似文献   

11.
Abstract.
  • 1 This study investigates interactions between Eucheira socialis (Pieridae: Lepidoptera), a strict monophagous herbivore, on Arbutus xalapensis (Ericaceae), a host plant with few herbivores. This tight association of insect on plant has many attributes conducive to reciprocal rather than diffuse evolution.
  • 2 An indirect way of testing plant–insect coevolutionary theories is to test for the necessary conditions for reciprocal evolution in ecological time. Two conditions for coevolution were studied: (1) host plants vary in their suitability for larval growth and development, and (2) ovipositing insects discriminate among these plants based on their relative suitability.
  • 3 Large differences in host plant suitability were found and relative differences were consistent from year to year.
  • 4 There was no evidence that female insects based their ovipositional decisions on relative tree quality, which implies that factors other than host plant quality are involved in the maintenance and evolution of oviposition behaviour in Eucheira.
  • 5 Of seven factors known to influence ovipositional preferences of insects among plants independent of potential larval success, the most likely causal factor in this system is the ability of females to balance a time/energy budget for finding potential oviposition sites, discriminating among them, and actually ovipositing.
  相似文献   

12.
Plant volatiles function as important signals for herbivores, parasitoids, predators, and neighboring plants. Herbivore attack can dramatically increase plant volatile emissions in many species. However, plants do not only react to herbivore-inflicted damage, but also already start adjusting their metabolism upon egg deposition by insects. Several studies have found evidence that egg deposition itself can induce the release of volatiles, but little is known about the effects of oviposition on the volatiles released in response to subsequent herbivory. To study this we measured the effect of oviposition by Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) moths on constitutive and herbivore-induced volatiles in maize (Zea mays L.). Results demonstrate that egg deposition reduces the constitutive emission of volatiles and suppresses the typical burst of inducible volatiles following mechanical damage and application of caterpillar regurgitant, a treatment that mimics herbivory. We discuss the possible mechanisms responsible for reducing the plant’s signaling capacity triggered by S. frugiperda oviposition and how suppression of volatile organic compounds can influence the interaction between the plant, the herbivore, and other organisms in its environment. Future studies should consider oviposition as a potential modulator of plant responses to insect herbivores.  相似文献   

13.
The effect of adult experience on in-flight orientation to plant–host complex volatiles byAphidius erviHaliday was studied in a wind tunnel bioassay, usingAcyrthosiphon pisum(Harris), maintained on broad bean plants (Vicia faba) as host. A short oviposition experience (15 s) on the plant–host complex (PHC) was sufficient to induce a drastic decrease of flight propensity and stimulated a foraging behavior characterized by intense walking activity. However, flight activity resumed to normal levels 1 h after the oviposition experience on the PHC occurred. For parasitoids conditioned on the PHC for at least 1 min the recorded proportion making oriented flights to the PHC was significantly higher than that for naive females. In contrast, oviposition experience in the absence of plant material did not influence theA. erviflight response. Oviposition attempts on aphid dummies without egg release did not reduce flight activity. WhenA. ervifemales were exposed to glass beads coated withAc. pisumcornicle secretion, a priming effect was observed, resulting, compared with naive females, in a significantly higher rate of oriented flights to the PHC. In contrast, oviposition attempts visually induced by colored aphid dummies did not influence flight behavior. A strong reaction to volatile cues from uninfested plants was induced by oviposition experience on newly infested broad bean plants. This appears to be a case of associative learning. In fact, uninfested broad bean plants are basically unattractive to naiveA. ervifemales. The results demonstrate that adult experience has a considerable influence onA. ervibehavior and may have important implications for biological control of natural pest aphid populations.  相似文献   

14.
Microclimate and host plant architecture significantly influence the abundance and behavior of insects. However, most research in this field has focused at the invertebrate assemblage level, with few studies at the single-species level. Using wild Solanum mauritianum plants, we evaluated the influence of plant structure (number of leaves and branches and height of plant) and microclimate (temperature, relative humidity, and light intensity) on the abundance and behavior of a single insect species, the monophagous tephritid fly Bactrocera cacuminata (Hering). Abundance and oviposition behavior were signficantly influenced by the host structure (density of foliage) and associated microclimate. Resting behavior of both sexes was influenced positively by foliage density, while temperature positively influenced the numbers of resting females. The number of ovipositing females was positively influenced by temperature and negatively by relative humidity. Feeding behavior was rare on the host plant, as was mating. The relatively low explanatory power of the measured variables suggests that, in addition to host plant architecture and associated microclimate, other cues (e.g., olfactory or visual) could affect visitation and use of the larval host plant by adult fruit flies. For 12 plants observed at dusk (the time of fly mating), mating pairs were observed on only one tree. Principal component analyses of the plant and microclimate factors associated with these plants revealed that the plant on which mating was observed had specific characteristics (intermediate light intensity, greater height, and greater quantity of fruit) that may have influenced its selection as a mating site.  相似文献   

15.
Hunt-Joshi TR  Blossey B 《Oecologia》2005,142(4):554-563
Interspecific interactions of herbivores sharing a host plant may be important in structuring herbivore communities. We investigated host plant-mediated interactions of root (Hylobius transversovittatus) and leaf herbivores (Galerucella calmariensis), released to control purple loosestrife (Lythrum salicaria) in North America, in field and potted plant experiments. In the potted plant experiments, leaf herbivory by G. calmariensis reduced H. transversovittatus larval survival (but not larval development) but did not affect oviposition preference. Root herbivory by H. transversovittatus did not affect either G. calmariensis fitness or oviposition preference. In field cage experiments, we found no evidence of interspecific competition between root and leaf herbivores over a 4-year period. Our data suggest that large populations of leaf beetles can negatively affect root-feeding larvae when high intensity of leaf damage results in partial or complete death of belowground tissue. Such events may be rare occurrences (or affected by experimental venue) since field data differed from data obtained from potted plant experiments, particularly at high leaf beetle densities. Interspecific interactions between G. calmariensis and H. transversovittatus are possible and may negatively affect either species, but this is unlikely to occur unless heavy feeding damage results in partial or complete plant death.  相似文献   

16.
Plants respond to grazing by herbivorous insects by emitting a range of volatile organic compounds, which attract parasitoids to their insect hosts. However, a positive outcome for the host plant is a necessary precondition for making the attraction beneficial or even adaptive. Parasitoids benefit plants by killing herbivorous insects, thus reducing future herbivore pressure, but also by curtailing the feeding intensity of the still living, parasitised host. In this study, the effect of parasitism on food consumption of the 5th instar larvae of the autumnal moth (Epirrita autumnata) was examined under laboratory conditions. Daily food consumption, as well as the duration of the 5th instar, was measured for both parasitised and non-parasitised larvae. The results showed that parasitism by the solitary endoparasitoid Zele deceptor not only reduced leaf consumption significantly but also hastened the onset of pupation in autumnal moth larvae. On the basis of the results, an empirical model was derived to assess the affects on the scale of the whole tree. The model suggests that parasitoids might protect the tree from total defoliation at least at intermediate larval densities. Consequently, a potential for plant–parasitoid chemical signalling appears to exist, which seems to benefit the mountain birch (Betula pubescens ssp. czerepanovii) by reducing the overall intensity of herbivore defoliation due to parasitism by this hymenopteran parasitoid.  相似文献   

17.
Foraging adults of phytophagous insects are attracted by host‐plant volatiles and supposedly repelled by volatiles from non‐host plants. In behavioural control of pest insects, chemicals derived from non‐host plants applied to crops are expected to repel searching adults and thereby reduce egg laying. How experience by searching adults of non‐host volatiles affects their subsequent searching and oviposition behaviour has been rarely tested. In laboratory experiments, we examined the effect of experience of a non‐host‐plant extract on the oviposition behaviour of the diamondback moth (DBM), Plutella xylostella, a specialist herbivore of cruciferous plants. Naive ovipositing DBM females were repelled by an extract of dried leaves of Chrysanthemum morifolium, a non‐host plant of DBM, but experienced females were not repelled. Instead they were attracted by host plants treated with the non‐host‐plant extract and laid a higher proportion of eggs on treated than on untreated host plants. Such behavioural changes induced by experience could lead to host‐plant range expansion in phytophagous insects and play an important role in determining outcome for pest management of some behavioural manipulation methods.  相似文献   

18.
The sawfly, Diprion pini L., is a pest of Pinus in Europe and is mainly found on P. sylvestris L. and P. nigra laricio Poiret. The relative importance of female oviposition capacity and behaviour, egg development, and larval survival on a new host plant was measured on 11 pine species. Five were natural host plants and six non-host plants, five of which are not indigenous to Europe. Oviposition choice tests showed that females discriminated between the pine species. Egg and larval development also differed between pine species. However, the female choice was not linked with hatching rate and larval development. Results of biological tests clearly indicated that there were different response patterns of D. pini life stages in relation to pine species, and these patterns were the same with insects of four different origins. We discuss the importance of each potential barrier to colonisation of a new host.  相似文献   

19.
Herbivorous insects may be informed about the presence of competitors on the same host plant by a variety of cues. These cues can derive from either the competitor itself or the damaged plant. In the mustard leaf beetle Phaedon cochleariae (Coleoptera, Chrysomelidae), adults are known to be deterred from feeding and oviposition by the exocrine glandular secretion of conspecific co-occurring larvae. We hypothesised that the exocrine larval secretion released by feeding larvae may adsorb to the surface of Chinese cabbage leaves, and thus, convey the information about their former or actual presence. Further experiments tested the influence of leaves damaged by conspecific larvae, mechanically damaged leaves, larval frass and regurgitant on the oviposition and feeding behaviour of P. cochleariae. Finally, the effect of previous conspecific herbivory on larval development and larval host selection was assessed. Our results show that (epi)chrysomelidial, the major component of the exocrine secretion from P. cochleariae larvae, was detectable by GC-MS in surface extracts from leaves upon which larvae had fed. However, leaves exposed to volatiles of the larval secretion were not avoided by female P. cochleariae for feeding or oviposition. Thus, we conclude that secretion volatiles did not adsorb in sufficient amounts on the leaf surface to display deterrent activity towards adults. By contrast, gravid females avoided to feed and lay their eggs on leaves damaged by second-instar larvae for three days when compared to undamaged leaves. Mechanical damage of leaves and treatment of artificially damaged leaves with larval frass or regurgitant did not affect oviposition and feeding of P. cochleariae. Since no adverse effects of previous herbivory on larval development were detected, we suggest that female P. cochleariae avoid Chinese cabbage leaves damaged by feeding larvae for other reasons than escape from competition or avoidance of direct negative effects that result from consuming induced plant material.  相似文献   

20.
Summary The performance of phytophagous insects is influenced by the nutritional quality of the food plant, which may vary with environmental conditions. Hardly any information exists on food-plant mediated effects of variable soil salinity on the performance of phytophagous insects. Conspicuous differences in salinity levels, however, are found in soils of intertidal wetlands such as salt marshes and mangroves. The growth of larvae of Bucculatrix maritima, a leaf miner of the salt marsh halophyte Aster tripolium, was studied on the host plant along the salinity gradient of the Westerschelde estuary (S.W. Netherlands). In addition, its performance on A. tripolium grown on low or high salinity culture medium was investigated experimentally. Although salinity conditions significantly influenced the chemistry of the host plants, insect performance seemed almost unaffected, although near the mouth of the estuary high environmental salinities may have caused some inhibition of larval growth. The results contrast with our previous studies on the stem-borer Agapanthia villosoviridescens, which showed that growth and development was conspicuously influenced by the changing characteristics of Aster tripolium along the estuarine salinity gradient. The location-dependent qualities of halophytes in an estuary thus appear to have species-specific effects on insect performance. We hypothesize that this phenomenon contributes to the existence of non-identical distribution patterns of phytophagous insects associated with the same halophyte in an estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号