首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The Sw-5 locus confers dominant resistance to tomato spotted wilt virus (TSWV). To map the location and facilitate the identification of markers linked to Sw-5 we developed a pair of near-isogenic lines (NILs) and an F2 Lycopersicon esculentum x L. pennellii population segregating for resistance to TSWV. DNA from the NILs was analyzed using 748 random 10-mer oligonucleotides to discern linked molecular markers using a random amplified polymorphic DNA (RAPD) approach. One random primer (GAGCACGGGA) was found to produce a RAPD band of about 2200 bp that demonstrates linkage to Sw-5. Data from co-segregation of resistance and restriction fragment length polymorphisms (RFLPs) in a F2 interspecific population position Sw-5 between the markers CT71 and CT220 near the telomere of the long arm of chromosome 9.  相似文献   

2.
 RAPD (random amplified polymorphic DNA) analysis was used to identify molecular markers linked to the Dn2 gene conferring resistance to the Russian wheat aphid (Diuraphis noxia Mordvilko). A set of near-isogenic lines (NILs) was screened with 300 RAPD primers for polymorphisms linked to the Dn2 gene. A total of 2700 RAPD loci were screened for linkage to the resistance locus. Four polymorphic RAPD fragments, two in coupling phase and two in repulsion phase, were identified as putative RAPD markers for the Dn2 gene. Segregation analysis of these markers in an F2 population segregating for the resistance gene revealed that all four markers were closely linked to the Dn2 locus. Linkage distances ranged from 3.3 cM to 4.4 cM. Southern analysis of the RAPD products using the cloned RAPD markers as probes confirmed the homology of the RAPD amplification products. The coupling-phase marker OPB10880c and the repulsion-phase marker OPN1400r were converted to sequence characterized amplified region (SCAR) markers. SCAR analysis of the F2 population and other resistant and susceptible South African wheat cultivars corroborated the observed linkage of the RAPD markers to the Dn2 resistance locus. These markers will be useful for marker-assisted selection of the Dn2 gene for resistance breeding and gene pyramiding. Received: 1 July 1997 / Accepted: 20 October 1997  相似文献   

3.
 Powdery mildew caused by Blumeria graminis DC. f. sp. triticiém. Marchal is an important disease of wheat (Triticum aestivum L. em Thell). We report here the identification of three random amplified polymorphic DNA (RAPD) markers closely linked to a gene for resistance to B. graminis in wheat. RAPD-PCR (polymerase chain reaction) analysis was conducted using bulked segregant analysis of closely related lines developed from a segregating F5 family. The F5 family was derived from a cross between the susceptible cultivar Clark and the resistant line Zhengzhou 871124. Genetic analysis indicated that resistance of Zhengzhou 871124 to powdery mildew is conferred by the gene Pm1. After performing RAPD-PCR analysis with 1300 arbitrary 10-mer primers and agarose-gel electrophoresis, two RAPD markers, UBC320420 and UBC638550, were identified to be co-segregating with the disease resistance. No recombinants were observed between either of the RAPD markers and the gene for resistance to powdery mildew after analysis of 244 F2 plants. The third RAPD marker, OPF12650, was identified with denaturing gradient-gel electrophoresis (DGGE), and was determined to be 5.4±1.9 cM from the resistance gene. UBC320420 and UBC638550 were present in wheat powdery mildew differential lines carrying the gene Pm1, suggesting linkage between these markers and the Pm1 resistance gene. Co-segregation between Pm1 and the two markers UBC320420 and UBC638550 was confirmed in a segregating population derived from a cross with CI14114, the wheat differential line carrying Pm1. The method of deriving closely related lines from inbred families that are segregating for a trait of interest should find wide application in the identification of DNA markers linked to important plant genes. The RAPD marker UBC638550 was converted to a sequence tagged site (STS). RAPD markers tightly linked to target genes may facilitate selection and enable gene pyramiding for powdery mildew resistance in wheat breeding programs. Received: 10 December 1995 / Accepted: 13 September 1996  相似文献   

4.
 We report the molecular mapping of the py-1 gene for resistance to corky root rot [Pyrenochaeta lycopersici (Schneider and Gerlach)] in tomato using RAPD and RFLP marker analysis. DNA from near-isogenic lines (NILs) of tomato differing in corky root rot resistance was screened with 575 random oligonucleotide primers to detect polymorphic DNAs linked to py-1. Three primers (OPW-04, OPC-02, OPG-19) revealed polymorphisms between the NILs. Twelve resistant and eight susceptible DNA pools derived from segregating F3 families were used to confirm that the RAPD markers were linked to the py-1 gene. Two of the linked amplified fragments, corresponding to OPW-04 and OPC-02, were subsequently cloned and mapped on the tomato molecular linkage map as RFLPs. These clones were located between TG40 and CT31 on the short arm of chromosome 3. Further analysis with selected RFLP markers showed that 7% (8.8 cM) of chromosome 3 of the resistant line ‘Moboglan’ was introgressed from the L. peruvianum donor parent. Three RFLP markers (TG40, TG324, and TG479) from the introgressed part of chromosome 3 were converted to cleaved amplified polymorphism (CAP) markers for use in a polymerase chain reaction (PCR) assay. These PCR markers will allow rapid large-scale screening of tomato populations for corky root rot resistance. Received: 2 January 1998 / Accepted: 12 January 1998  相似文献   

5.
Linkage analysis was used to determine the genetic map location of er-1, a recessive gene conditioning resistance to powdery mildew, on the Pisum sativum genome. Genetic linkage was demonstrated between er-1 and linkage group 6 markers after analyzing the progeny of two crosses, an F2 population and a set of recombinant inbred lines. The classes of genetic markers surrounding er-1 include RFLP, RAPD and allozyme markers as well as the morphological marker Gty. A RAPD marker tightly linked to er-1 was identified by bulked segregant analysis. After DNA sequence characterization, specific PCR primers were designed to convert this RAPD marker into a sequence characterized amplified region (SCAR).  相似文献   

6.
The objective of this investigation was to tag a locus for white rust resistance in a Brassica rapa ssp. oleifera F2 population segregating for this trait, using bulked segregant analysis with random amplified polymorphic DNA (RAPD) markers, linkage mapping and a candidate gene approach based on resistance gene analogs (RGAs). The resistance source was the Finnish line Bor4109. The reaction against white rust races 7a and 7v was scored in 20 seedlings from each self-pollinated F2 individual. The proportion of resistant plants among these F3 families varied from 0 to 67%. Bulked segregant analysis did not reveal any markers linked with resistance and, therefore, a linkage map with 81 markers was created. A locus that accounted for 18.4% of the variation in resistance to white rust was mapped to linkage group (LG) 2 near the RAPD marker Z19a. During the study, a bacterial resistance gene homologous to Arabidopsis RPS2 and six different RGAs were sequenced. RPS2 and five of the RGAs were mapped to linkage groups LG1, LG4 and LG9. Unfortunately, none of the RGAs could be shown to be associated with white rust resistance.Communicated by H.C. BeckerThe nucleotide sequence data reported has been deposited in the Genbank under the accession numbers AF315081–AF315087.  相似文献   

7.
A consensus molecular linkage map of 61.9 cM containing the Or5 gene, which confers resistance to race E of broomrape orobanche cumana, five SCAR markers (three dominant, two codominant) and one RAPD marker were identified based on segregation data scored from two F2 populations of susceptible×resistant sunflower line crosses. Bulked segregant analysis was carried out to generate the five SCAR markers, while the single RAPD marker in the group was identified from 61 segregating RAPD markers that were directly screened on one of the two F2 populations. The five SCAR markers, RTS05, RTS28, RTS40, RTS29 and RTS41, were significantly (LOD≥4.0) linked to the Or5 gene and mapped separately at 5.6, 13.6, 14.1, 21.4 and 39.4 cM from the Or5 locus on one side, while the RAPD marker, UBC120_660, was found at 22.5 cM (LOD=1.4) on the opposite side. These markers should facilitate the efficient transfer of the resistance gene among sunflower breeding lines. As the first report on molecular markers linked to a broomrape resistance gene, the present work provides a starting point to study other genes and to examine the hypothesis of the clustering of broomrape resistance genes in sunflower. Received: 16 September 1998 / Accepted: 22 June 1999  相似文献   

8.
Through random amplified polymorphic DNA (RAPD) analysis we identified a putative marker linked to the Dn5 resistance gene. This marker was converted to a more reliable sequence-characterised-amplified regions (SCAR) marker. The initial SCAR marker amplified the correct amplification product but failed to discern between the susceptible and resistant individuals. Hence, it was utilised to sequence the internal fragment. All nested primers designed from the internal sequences were also unable to produce any polymorphism between the susceptible and resistant cultivars. Restriction digests were then performed on these fragments, and the restriction enzyme EcoRI was able to discern between the susceptible and resistant F2 individuals of the Dn5 population. This granted one marker amplified with the internal SCAR primer set OPF141083 the ability to differentiate between parental individuals carrying the Dn5 genes. This marker was tested in a segregating F2 population carrying the Dn5 resistance gene and proved able to differentiate between the segregating individuals. This marker may prove useful in marker assisted selection (MAS), although performing restriction digests may hamper the throughput of a high number of samples. Received: 4 August 1999 / Accepted: 27 August 1999  相似文献   

9.
The Tsw gene conferring dominant resistance to the Tospovirus Tomato spotted wilt virus (TSWV) in Capsicum spp. has been tagged with a random amplified polymorphic DNA marker and mapped to the distal portion of chromosome 10. No mapped homologues of Sw-5, a phenotypically similar dominant TSWV resistance gene in tomato, map to this region in C. annuum, although a number of Sw-5 homologues are found at corresponding positions in pepper and tomato. The relationship between Tsw and Sw-5 was also examined through genetic studies of TSWV. The capacity of TSWV-A to overcome the Tsw gene in pepper and the Sw-5 gene in tomato maps to different TSWV genome segments. Therefore, despite phenotypic and genetic similarities of resistance in tomato and pepper, we infer that distinct viral gene products control the outcome of infection in plants carrying Sw-5 and Tsw, and that these loci do not appear to share a recent common evolutionary ancestor.  相似文献   

10.
A PCR-based codominant marker has been developed which is tightly linked to Mi, a dominant genetic locus in tomato that confers resistance to several species of root-knot nematode. DNA from tomato lines differing in nematode resistance was screened for random amplified polymorphic DNA markers linked to Mi using decamer primers. Several markers were identified. One amplified product, REX-1, obtained using a pair of decamer primers, was present as a dominant marker in all nematode-resistant tomato lines tested. REX-1 was cloned and the DNA sequences of its ends were determined and used to develop 20-mer primers. PCR amplification with the 20-mer primers produced a single amplified band in both susceptible and resistant tomato lines. The amplified bands from susceptible and resistant lines were distinguishable after cleavage with the restriction enzyme Taq I. The linkage of REX-1 to Mi was verified in an F2 population. This marker is more tightly linked to Mi than is Aps-1, the currently-used isozyme marker, and allows screening of germplasm where the linkage between Mi and Aps-1 has been lost. Homozygous and heterozygous individuals can be distinguished and the procedure can be used for rapid, routine screening. The strategy used to obtain REX-1 is applicable to obtaining tightly-linked markers to other genetic loci. Such markers would allow rapid, concurrent screening for the segregation of several loci of interest.  相似文献   

11.
Fusarium wilt (Fusarium oxysporum Schlecht. f. sp. melongenae) is a vascular disease of eggplant (Solanum melongena L.). The objectives of this work were (1) to confirm the monogenic inheritance of fusarium wilt resistance in eggplant, (2) to identify molecular markers linked to this resistance, and (3) to develop SCAR markers from most informative markers. We report the tagging of the gene for resistance to fusarium wilt (FOM) in eggplant using SRAP, RGA, SRAP-RGA and RAPD markers. Analysis of segregation data confirmed the monogenic inheritance of resistance. DNA from F2 and BC1 populations of eggplant segregating for fusarium wilt resistance was screened with 2,316 primer combinations to detect polymorphism. Three markers were linked within 2.6 cM of the gene. The codominant SRAP marker Me8/Em5 and dominant SRAP-RGA marker Em12/GLPL2 were tightly linked to each other and mapped 1.2 cM from the resistance gene, whereas RAPD marker H12 mapped 2.6 cM from the gene and on the same side as the other two markers. The SRAP marker was converted into two dominant SCAR markers that were confirmed to be linked to the resistance gene in the F2, BC1 and F2 of BC3 generations of the same cross. These markers provide a starting point for mapping the eggplant FOM resistance gene in eggplant and for exploring the synteny between solanaceous crops for fusarium wilt resistance genes. The SCAR markers will be useful for identifying fusarium wilt-resistant genotypes in marker-assisted selection breeding programs using segregating progenies of the resistant eggplant progenitor used in this study.  相似文献   

12.
Anthracnose, caused by Colletotrichum graminicola, infects all aerial parts of sorghum, Sorghum bicolor (L.) Moench, plants and causes loss of as much as 70%. F1 and F2 plants inoculated with local isolates of C. graminicola indicated that resistance to anthracnose in sorghum accession G 73 segregated as a recessive trait in a cross with susceptible cultivar HC 136. To facilitate the use of marker-assisted selection in sorghum breeding programs, a PCR-based specific sequence characterized amplified region (SCAR) marker was developed. A total of 29 resistant and 20 susceptible recombinant inbred lines (RILs) derived from a HC 136 × G 73 cross was used for bulked segregant analysis to identify a RAPD marker closely linked to a gene for resistance to anthracnose. The polymorphism between the parents HC 136 and G 73 was evaluated using 84 random sequence decamer primers. Among these, only 24 primers generated polymorphism. On bulked segregant analysis, primer OPA 12 amplified a unique band of 383 bp only in the resistant parent G 73 and resistant bulk. Segregation analysis of individual RILs showed the marker OPA 12383 was 6.03 cM from the locus governing resistance to anthracnose. The marker OPA 12383 was cloned and sequenced. Based on the sequence of cloned RAPD product, a pair of SCAR markers SCA 12-1 and SCA 12-2 was designed using the MacVector program, which specifically amplified this RAPD fragment in resistant parent G 73, resistant bulk and respective RILs. Therefore, it was confirmed that SCAR marker SCA 12 is at the same locus as RAPD marker OPA 12383 and hence, is linked to the gene for resistance to anthracnose.  相似文献   

13.
A leaf rust resistance gene Lr19 on the chromosome 7DL of wheat derived from Agropyron elongatum was tagged with random amplified polymorphic DNA (RAPD) and microsatellite markers. The F2 population of 340 plants derived from a cross between the leaf rust resistant near-isogenic line (NIL) of Thatcher (Tc + Lr19) and leaf rust susceptible line Agra Local that segregated for dominant monogenic leaf rust resistance was utilized for generating the mapping population. The molecular markers were mapped in the F2 derived F3 homozygous population of 140 seedlings. Sixteen RAPD markers were identified as linked to the alien gene Lr19 among which eight were in a coupling phase linkage. Twelve RAPD markers co-segregated with Lr19 locus. Nine microsatellite markers located on the long arm of chromosome 7D were also mapped as linked to the gene Lr19, including 7 markers which co-segregated with Lr19 locus, thus generating a saturated region carrying 25 molecular markers linked to the gene Lr19 within 10.2 ± 0.062 cM on either side of the locus. Two RAPD markers S265512 and S253737 which flanked the locus Lr19 were converted to sequence characterized amplified region markers SCS265512 and SCS253736, respectively. The marker SCS265512 was linked with Lr19 in a coupling phase and the marker SCS253736 was linked in a repulsion phase, which when used together mimicked one co-dominant marker capable of distinguishing the heterozygous resistant seedlings from the homozygous resistant. The molecular markers were validated on NILs mostly in Thatcher background isogenic for 44 different Lr genes belonging to both native and alien origin. The validation for polymorphism in common leaf rust susceptible cultivars also confirmed the utility of these tightly linked markers to the gene Lr19 in marker-assisted selection.  相似文献   

14.
The selection of TSWV resistant individuals can be facilitated by molecular markers. RAPD analysis was carried out on three forms (Stevens × Rodade — resistant; Rey de los Tempranos — moderately tolerant; Potentat — susceptible) with the use of 271 primers. Out of 271 primers 28 generated stable polymorphism and so they were tested for linkage to resistance gene. Bulk segregant analysis (BSA) was applied to F2 segregating progeny developed from resistant × susceptible parents. As a result, 5 primers enabling us to distinguish between resistant and susceptible forms were detected. Only one of them had previously been reported by Chague et al. (1996). The analysis should be repeated on a larger population to confirm the results obtained.  相似文献   

15.
Southern corn rust (SCR) is a fungal disease caused by Puccinia polysora Underw, which can infect maize and may result in substantial yield losses in maize production. The maize inbred line Qi319 carries the SCR resistance gene RppQ. In order to identify molecular markers linked to the RppQ gene, several techniques were utilized including random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR), and amplified fragment length polymorphism (AFLP). In addition, sequence characterized amplified region (SCAR) techniques combined with bulked segregant analysis (BSA) were used. Seven RAPD markers, eight SSR markers, and sixty-three AFLP primer combinations amplified polymorphisms between two parents and two bulk populations. A large F2 population was used for genetic analysis and for fine mapping of the RppQ gene region. One AFLP polymorphic band, M-CAA/E-AGC324, was converted to a SCAR marker, MA7, which was mapped to a position 0.46 cM from RppQ. Finally, the RppQ gene was mapped between the SCAR marker MA7 and the AFLP marker M-CCG/E-AGA157 with distances of 0.46 and 1.71 cM, respectively.  相似文献   

16.
 In tomato, Bulked Segregant Analysis was used to identify random amplified polymorphic DNA (RAPD) markers linked to a quantitative trait locus (QTL) involved in the resistance to the Tomato Yellow Leaf Curl Virus. F4 lines were distributed into two pools, each consisting of the most resistant and of the most susceptible individuals, respectively. Both pools were screened using 600 random primers. Four RAPD markers were found to be linked to a QTL responsible for up to 27.7% of the resistance. These markers, localized in the same linkage group within a distance of 17.3 cM, were mapped to chromosome 6 on the tomato RFLP map. Received: 21 August 1996 / Accepted: 4 April 1997  相似文献   

17.
The powdery mildew resistance from Avena macrostachya was successfully introgressed into hexaploid oat (A. sativa). Genetic analysis of F1, F2, F3 and BC1 populations from two powdery-mildew resistant introgression lines revealed that the resistance is controlled by a dominant gene, tentatively designated Eg-5. Molecular marker analysis was conducted using bulked-segregant analysis in two segregating F3 populations. One codominant simple sequence repeats (SSR) marker AM102 and four AFLP-derived PCR-based markers were successfully developed. The SSR marker AM102 and the STS marker ASE41M56 were linked to the gene Eg-5, with genetic distances of 2 and 0.4 cM, respectively, in both mapping populations. Three STS markers (ASE45M56, ASE41M61, ASE36M55) co-segregated with Eg-5 in one population while two (ASE45M56, ASE36M55) of them linked to Eg-5 with a genetic distance of 1 cM in another population. The gene was further mapped to be in a region corresponding to linkage group 22_44+18 in the Kanota × Ogle (KO) hexaploid oat map by comparative mapping. To our knowledge, this is the first report of mapping powdery-mildew resistance in hexaploid oat. The new resistance source of A. macrostachya, together with the tightly linked markers identified here, could be beneficial in oat breeding programmes.  相似文献   

18.
Sw-5b is an effective resistance gene used widely in tomato to control tomato spotted wilt virus (TSWV), which causes severe losses in crops worldwide. Sw-5b confers resistance by recognizing a 21-amino-acid peptide region of the viral movement protein NSm (NSm21, amino acids 115–135). However, C118Y or T120N mutation within this peptide region of NSm has given rise to field resistance-breaking (RB) TSWV isolates. To investigate the potential ability of TSWV to break Sw-5b-mediated resistance, we mutagenized each amino acid on NSm21 and determined which amino acid mutations would evade Sw-5b recognition. Among all alanine-scan mutants, NSmP119A, NSmW121A, NSmD122A, NSmR124A, and NSmQ126A failed to induce a hypersensitive response (HR) when coexpressed with Sw-5b in Nicotiana benthamiana leaves. TSWV with the NSmP119A, NSmW121A, or NSmQ126A mutation was defective in viral cell-to-cell movement and systemic infection, while TSWV carrying the NSmD122A or NSmR124A mutation was not only able to infect wild-type N. benthamiana plants systemically but also able to break Sw-5b-mediated resistance and establish systemic infection on Sw-5b-transgenic N. benthamiana plants. Two improved mutants, Sw-5bL33P/K319E/R927A and Sw-5bL33P/K319E/R927Q, which we recently engineered and which provide effective resistance against field RB isolates carrying NSmC118Y or NSmT120N mutations, recognized all NSm21 alanine-substitution mutants and conferred effective resistance against new experimental RB TSWV with the NSmD122A or NSmR124A mutation. Collectively, we determined the key residues of NSm for Sw-5b recognition, investigated their potential RB ability, and demonstrated that the improved Sw-5b mutants could provide effective resistance to both field and potential RB TSWV isolates.  相似文献   

19.
Ryegrass blast, also called gray leaf spot, is caused by the fungus Pyricularia sp. It is one of the most serious diseases of Italian ryegrass (Lolium multiflorum Lam.) in Japan. We analyzed segregation of resistance in an F1 population from a cross between a resistant and a susceptible cultivar. The disease severity distribution in the F1 population suggested that resistance was controlled by a major gene (LmPi1). Analysis of amplified fragment length polymorphisms with bulked segregant analysis identified several markers tightly linked to LmPi1. To identify other markers linked to LmPi1, we used expressed sequence tag-cleaved amplified polymorphic sequence (EST-CAPS) markers mapped in a reference population of Italian ryegrass. Of the 30 EST-CAPS markers screened, one marker, p56, flanking the LmPi1 locus was found. The restriction pattern of p56 amplification showed a unique fragment corresponding to the resistant allele at the LmPi1 locus. A linkage map constructed from the reference population showed that the LmPi1 locus was located in linkage group 5 of Italian ryegrass. Genotype results obtained from resistant and susceptible cultivars indicate that the p56 marker is useful for introduction of the LmPi1 gene into susceptible germplasm in order to develop ryegrass cultivars with enhanced resistance to ryegrass blast.  相似文献   

20.
Groundnut rosette disease is the most destructive viral disease of peanut in Africa and can cause serious yield losses under favourable conditions. The development of disease-resistant cultivars is the most effective control strategy. Resistance to the aphid vector, Aphis craccivora, was identified in the breeding line ICG 12991 and is controlled by a single recessive gene. Bulked segregant analysis (BSA) and amplified fragment length polymorphism (AFLP) analysis were employed to identify DNA markers linked to aphid resistance and for the development of a partial genetic linkage map. A F2:3 population was developed from a cross using the aphid-resistant parent ICG 12991. Genotyping was carried out in the F2 generation and phenotyping in the F3 generation. Results were used to assign individual F2 lines as homozygous-resistant, homozygous-susceptible or segregating. A total of 308 AFLP (20 EcoRI+3/MseI+3, 144 MluI+3/MseI+3 and 144 PstI+3/MseI+3) primer combinations were used to identify markers associated with aphid resistance in the F2:3 population. Twenty putative markers were identified, of which 12 mapped to five linkage groups covering a map distance of 139.4 cM. A single recessive gene was mapped on linkage group 1, 3.9 cM from a marker originating from the susceptible parent, that explained 76.1% of the phenotypic variation for aphid resistance. This study represents the first report on the identification of molecular markers closely linked to aphid resistance to groundnut rosette disease and the construction of the first partial genetic linkage map for cultivated peanut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号