首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Bulked segregant analysis was used to identify random amplified polymorphic DNA (RAPD) markers linked to the Sw-5 gene for resistance to tomato spotted wilt virus (TSWV) in tomato. Using two pools of phenotyped individuals from one segregating population, we identified four RAPD markers linked to the gene of interest. Two of these appeared tightly linked to Sw-5, whereas another, linked in repulsion phase, enabled the identification of heterozygous and susceptible plants. After linkage analysis of an F2 population, the RAPD markers were shown to be linked to Sw-5 within a distance of 10.5 cM. One of the RAPD markers close to Sw-5 was used to develop a SCAR (sequence characterized amplified region) marker. Another RAPD marker was stabilized into a pseudo-SCAR marker by enhancing the specificity of its primer sequence without cloning and sequencing. RAPD markers were mapped to chromosome 9 on the RFLP tomato map developed by Tanksley et al. (1992). The analysis of 13 F3 families and eight BC2 populations segregating for resistance to TSWV confirmed the linkage of the RAPD markers found. These markers are presently being used in marker-assisted plant breeding.  相似文献   

2.
 The inheritance of an inter-simple-sequence-repeat (ISSR) polymorphism was studied in a cross of cultivated chickpea (Cicer arietinum L.) and a closely related wild species (C. reticulatum Lad.) using primers that anneal to a simple repeat of various lengths, sequences and non-repetitive motifs. Dinucleotides were the majority of those tested, and provided all of the useful banding patterns. The ISSR loci showed virtually complete agreement with expected Mendelian ratios. Twenty two primers were used for analysis and yielded a total of 31 segregating loci. Primers based on (GA)n repeats were the most abundant while primers with a (TG)n repeat gave the largest number of polymorphic loci. Nucleotides at the 5′ and 3′ end of the primers played an important role in detecting polymorphism. All the markers showed dominance. We found an ISSR marker linked to the gene for resistance to fusarium wilt race 4. The marker concerned, UBC-855500, was found to be linked in repulsion with the fusarium wilt resistance gene at a distance of 5.2 cM. It co-segregated with CS-27700, a RAPD marker previously shown to be linked to the gene for resistance to fusarium wilt race 1, and was mapped to linkage group 6 of the Cicer genome. This indicated that genes for resistance to fusarium wilt races 1 and 4 are closely linked. The marker UBC-855500 is located 0.6 cM from CS-27700 and is present on the same side of the wilt resistance gene. To our knowledge this is the first report of the utility of an ISSR marker in gene tagging. These markers may provide valuable information for the development of sequence-tagged microsatellite sites (STMS) at a desired locus. Received: 10 August 1997 / Accepted: 6 October 1997  相似文献   

3.
This is the first report on genetic studies and molecular tagging of a gene regulating flowering time in the stem nodulating legume crop Sesbania rostrata (Bremek. & Obrem.). An F2 segregating population was developed from a cross between Trombay Sesbania rostrata-1 (TSR-1, a radiation induced late flowering mutant) and S. rostrata. A phenotypic segregation ratio of 3 (normal flowering):1 (late flowering) in the F2 generation indicated that the late flowering is governed as a monogenic recessive trait. A genotypic ratio of 1:2:1 in the F2 generation, determined from phenotypic segregation patterns in 73 F3 families, confirmed the monogenic inheritance of the late flowering trait. Inter Simple Sequence Repeat (ISSR) and Amplified Fragment Length Polymorphism (AFLP) marker techniques were evaluated for their applicability as genetic marker systems in this green manure crop. Using the F2 segregating population, an ISSR marker (UBC 8811000) tightly linked to the trait was identified. Two linked AFLP markers GCTG500 and CCAT350 were also identified. They were found to be at a distance of 1.4 ± 0.034 cM and 8.0 ± 0.047 cM flanking the flowering locus respectively. The ISSR marker UBC 8811000 was converted into a Sequence Characterized Amplified Region (SCAR) marker. The single recessive mutation regulating the late flowering trait and the availability of tightly linked, flanking markers will help in identification and isolation of the gene controlling the flowering time trait.  相似文献   

4.
A consensus molecular linkage map of 61.9 cM containing the Or5 gene, which confers resistance to race E of broomrape orobanche cumana, five SCAR markers (three dominant, two codominant) and one RAPD marker were identified based on segregation data scored from two F2 populations of susceptible×resistant sunflower line crosses. Bulked segregant analysis was carried out to generate the five SCAR markers, while the single RAPD marker in the group was identified from 61 segregating RAPD markers that were directly screened on one of the two F2 populations. The five SCAR markers, RTS05, RTS28, RTS40, RTS29 and RTS41, were significantly (LOD≥4.0) linked to the Or5 gene and mapped separately at 5.6, 13.6, 14.1, 21.4 and 39.4 cM from the Or5 locus on one side, while the RAPD marker, UBC120_660, was found at 22.5 cM (LOD=1.4) on the opposite side. These markers should facilitate the efficient transfer of the resistance gene among sunflower breeding lines. As the first report on molecular markers linked to a broomrape resistance gene, the present work provides a starting point to study other genes and to examine the hypothesis of the clustering of broomrape resistance genes in sunflower. Received: 16 September 1998 / Accepted: 22 June 1999  相似文献   

5.
Rice stripe virus (RSV) is one of the most damaging diseases affecting rice in East Asia. Rice variety 502 is highly resistant to RSV, while variety 5112 is extremely susceptible. Field statistical data revealed that all “502 × 5112” F1 individuals were resistant to RSV and the ratio of resistant to susceptible plants was 3:1 in the F2 population and 1:1 in the BC1F1 population. These results indicated that a dominant gene, designated RSV1, controlled the resistance. Simple sequence repeat (SSR) analysis was subsequently carried out in an F2 population. Sixty SSR markers evenly distributed on the 12 rice chromosomes were screened and tested. Two markers, RM229 and RM206, showed linkage with RSV1. Based on this result, six SSR markers flanking RM229 and RM206 were further selected and tested. Results indicated that SSR markers RM457 and RM473E were linked to RSV1 with a genetic distance of 4.5 and 5.0 cM, respectively. All of the four SSR markers (RM229, RM473E, RM457 and RM206) linked to RSV1 were all located on chromosome 11, therefore RSV1 should be located on chromosome 11 also. In order to find some new markers more closely linked to the RSV1 gene, sequence-related amplified polymorphism (SRAP) analysis was performed. A total of 30 SRAP primer-pairs were analyzed, and one marker SR1 showed linkage with RSV1 at a genetic distance of 2.9 cM. Finally, RSV1 gene was mapped on chromosome 11 between SSR markers RM457 and SRAP marker SR1 with a genetic distance of 4.5 cM and 2.9 cM, respectively.  相似文献   

6.
The powdery mildew resistance from Avena macrostachya was successfully introgressed into hexaploid oat (A. sativa). Genetic analysis of F1, F2, F3 and BC1 populations from two powdery-mildew resistant introgression lines revealed that the resistance is controlled by a dominant gene, tentatively designated Eg-5. Molecular marker analysis was conducted using bulked-segregant analysis in two segregating F3 populations. One codominant simple sequence repeats (SSR) marker AM102 and four AFLP-derived PCR-based markers were successfully developed. The SSR marker AM102 and the STS marker ASE41M56 were linked to the gene Eg-5, with genetic distances of 2 and 0.4 cM, respectively, in both mapping populations. Three STS markers (ASE45M56, ASE41M61, ASE36M55) co-segregated with Eg-5 in one population while two (ASE45M56, ASE36M55) of them linked to Eg-5 with a genetic distance of 1 cM in another population. The gene was further mapped to be in a region corresponding to linkage group 22_44+18 in the Kanota × Ogle (KO) hexaploid oat map by comparative mapping. To our knowledge, this is the first report of mapping powdery-mildew resistance in hexaploid oat. The new resistance source of A. macrostachya, together with the tightly linked markers identified here, could be beneficial in oat breeding programmes.  相似文献   

7.
An integrated molecular marker map of the chickpea genome was established using 130 recombinant inbred lines from a wide cross between a cultivar resistant to fusarium wilt caused by Fusarium oxysporum Schlecht. emend. Snyd. &. Hans f. sp. ciceri (Padwick) Snyd & Hans, and an accession of Cicer reticulatum (PI 489777), the wild progenitor of chickpea. A total of 354 markers were mapped on the RILs including 118 STMSs, 96 DAFs, 70 AFLPs, 37 ISSRs, 17 RAPDs, eight isozymes, three cDNAs, two SCARs and three loci that confer resistance against different races of fusarium wilt. At a LOD-score of 4.0, 303 markers cover 2077.9 cM in eight large and eight small linkage groups at an average distance of 6.8 cM between markers. Fifty one markers (14.4%) were unlinked. A clustering of markers in central regions of linkage groups was observed. Markers of the same class, except for ISSR and RAPD markers, tended to generate subclusters. Also, genes for resistance to races 4 and 5 of fusarium wilt map to the same linkage group that includes an STMS and a SCAR marker previously shown to be linked to fusarium wilt race 1, indicating a clustering of several fusarium-wilt resistance genes around this locus. Significant deviation from the expected 1 : 1 segregation ratio was observed for 136 markers (38.4%, P<0.05). Segregation was biased towards the wild progenitor in 68% of the cases. Segregation distortion was similar for all marker types except for ISSRs that showed only 28.5% aberrant segregation. The map is the most extended genetic map of chickpea currently available. It may serve as a basis for marker-assisted selection and map-based cloning of fusarium wilt resistance genes and other agronomically important genes in future. Received: 17 November 1999 / Accepted: 4 June 2000  相似文献   

8.
 We describe a simple and new approach, based on inter-simple sequence repeats (ISSRs), for finding markers linked to clusters of disease resistance genes. In this approach, simple sequence repeats (SSR) are used directly in PCR reactions, and markers found to be linked to disease resistance genes provide important information for the selection of other sequences which can be used with PCR to find other linked markers. Based on an ISSR marker linked to a gene of interest, many new markers can be identified in the same region. We previously demonstrated that ISSR markers are useful in gene tagging and identified a marker, UBC-855500, linked to the gene for resistance to fusarium wilt race 4 in chickpea. This ISSR marker provided the information used in the present study for selecting other primers which amplified a region linked to the gene for resistance to fusarium wilt race 4. The primers were based on homology with the (AC)n sequence and were used for PCR amplifications. Changes in the sequence were at the anchor region of the primers. The repeat (AC)8T amplified a marker, UBC-8251200, which was located 5.0 cM from the gene for resistance to fusarium wilt race 4 and was closer than other markers. These results indicated that ISSR markers can provide important information for the design of other primers and that by making changes at the 3′ and 5′ anchors close linkage to the desired gene can be found. The approach allows rapid scanning of the targeted region and may provide important information for genome analysis of plant species. Received: 20 January 1998 / Accepted: 19 March 1998  相似文献   

9.
 RAPD (random amplified polymorphic DNA) analysis was used to identify molecular markers linked to the Dn2 gene conferring resistance to the Russian wheat aphid (Diuraphis noxia Mordvilko). A set of near-isogenic lines (NILs) was screened with 300 RAPD primers for polymorphisms linked to the Dn2 gene. A total of 2700 RAPD loci were screened for linkage to the resistance locus. Four polymorphic RAPD fragments, two in coupling phase and two in repulsion phase, were identified as putative RAPD markers for the Dn2 gene. Segregation analysis of these markers in an F2 population segregating for the resistance gene revealed that all four markers were closely linked to the Dn2 locus. Linkage distances ranged from 3.3 cM to 4.4 cM. Southern analysis of the RAPD products using the cloned RAPD markers as probes confirmed the homology of the RAPD amplification products. The coupling-phase marker OPB10880c and the repulsion-phase marker OPN1400r were converted to sequence characterized amplified region (SCAR) markers. SCAR analysis of the F2 population and other resistant and susceptible South African wheat cultivars corroborated the observed linkage of the RAPD markers to the Dn2 resistance locus. These markers will be useful for marker-assisted selection of the Dn2 gene for resistance breeding and gene pyramiding. Received: 1 July 1997 / Accepted: 20 October 1997  相似文献   

10.
Three single nucleotide polymorphism (SNP) sites in which amino acids had changed were detected by sequence analysis within the leucine-rich repeat (LRR) region of the Fom-2 gene. Cleaved amplified polymorphic sequence (CAPS) and allele-specific PCR (AS-PCR) methods were employed to explore the SNP validation linked to fusarium wilt resistance in the F1 and F2 generations simultaneously. Homozygous- and heterozygous-resistant genotypes and homozygous-susceptible genotype could be clearly distinguished using the CAPS method, and three detected SNP sites were observed to be linked to fusarium wilt resistance, with a segregation ratio of 1:2:1 in the F2 generation. In addition, heterozygous-resistant and homozygous-susceptible genotypes could be clearly distinguished in the F1 generation using the AS-PCR method, showing a 3:1 segregation in terms of resistant and susceptible genotypes in the F2 generation. We therefore developed SNP-based functional markers (FMs) and identified some melon germplasm resistant to fusarium wilt by FM analysis within melon species. In conclusion, the SNP-based FMs originating from the SNP site of the Fom-2 LRR region were determined to be linked to fusarium wilt resistance and showed promise in the enhancement of breeding in melon.  相似文献   

11.
The maize inbred lines 1145 (resistant) and Y331 (susceptible), and the F1, F2 and BC1F1 populations derived from them were inoculated with the pathogen Pythium inflatum Matthews, which causes stalk rot in Zea mays. Field data revealed that the ratio of resistant to susceptible plants was 3:1 in the F2 population, and 1:1 in the BC1F1population, indicating that the resistance to P. inflatum Matthews was controlled by a single dominant gene in the 1145×Y331 cross. The gene that confers resistance to P. inflatum Matthews was designated Rpi1 for resistance to P. inflatum) according to the standard nomenclature for plant disease resistance genes. Fifty SSR markers from 10 chromosomes were first screened in the F2 population to find markers linked to the Rpi1 gene. The results indicated that umc1702 and mmc0371 were both linked to Rpi1, placing the resistance gene on chromosome 4. RAPD (randomly amplified polymorphic DNA) markers were then tested in the F2population using bulked segregant analysis (BSA). Four RAPD products were found to show linkage to the Rpi1 gene. Then 27 SSR markers and 8 RFLP markers in the region encompassing Rpi1 were used for fine-scale mapping of the resistance gene. Two SSR markers and four RFLP markers were linked to the Rpi1 gene. Finally, the Rpi1 gene was mapped between the SSR markers bnlg1937 and agrr286 on chromosome 4, 1.6 cM away from the former and 4.1 cM distant from the latter. This is the first time that a dominant gene for resistance to maize stalk rot caused by P. inflatum Matthews has been mapped with molecular marker techniques.  相似文献   

12.
Sequence-tagged microsatellite site (STMS) and sequence-tagged site (STS) markers linked closely to Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea were identified, and linkage between three wilt resistance genes was elucidated. The resistance to race 3 in chickpea germplasm accession WR-315 was inherited as a single gene, designated foc-3, in 100 F7 recombinant inbred lines derived from the cross of WR-315 (resistant) × C-104 (susceptible). The foc-3 gene was mapped 0.6 cM from STMS markers TA96 and TA27 and STS marker CS27A. Another STMS marker, TA194, at 14.3 cM, flanked the gene on the other side. Linkage between foc-3 and two other chickpea wilt resistance genes, foc-1 (syn. h 1 ) and foc-4, was established. foc-3 was mapped 9.8 cM from foc-1 and 8.7 cM from foc-4, whereas foc-1 and foc-4 are closely linked at 1.1 cM. The identification of closely linked markers to resistance genes will facilitate marker-assisted selection for introgression of the race 3 resistance gene to susceptible chickpea lines.Communicated by H.C. Becker  相似文献   

13.
Southern corn rust (SCR) is a fungal disease caused by Puccinia polysora Underw, which can infect maize and may result in substantial yield losses in maize production. The maize inbred line Qi319 carries the SCR resistance gene RppQ. In order to identify molecular markers linked to the RppQ gene, several techniques were utilized including random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR), and amplified fragment length polymorphism (AFLP). In addition, sequence characterized amplified region (SCAR) techniques combined with bulked segregant analysis (BSA) were used. Seven RAPD markers, eight SSR markers, and sixty-three AFLP primer combinations amplified polymorphisms between two parents and two bulk populations. A large F2 population was used for genetic analysis and for fine mapping of the RppQ gene region. One AFLP polymorphic band, M-CAA/E-AGC324, was converted to a SCAR marker, MA7, which was mapped to a position 0.46 cM from RppQ. Finally, the RppQ gene was mapped between the SCAR marker MA7 and the AFLP marker M-CCG/E-AGA157 with distances of 0.46 and 1.71 cM, respectively.  相似文献   

14.
The Rf3 gene restores the pollen fertility disturbed by S male sterile cytoplasm. In order to develop molecular markers tightly linked to Rf3, we used amplified fragment length polymorphism (AFLP) technique with near isogenic lines (NILs) and bulk segregant analysis (BSA). A BC1F1 population from a pair of NILs with different Rf3 locus was constructed and 528 primer combinations was screened. A linkage map was constructed around the Rf3 locus, which was mapped on the distal region of chromosome 2 long arm with the help of SSR marker UMC2184. The closest marker E7P6 was 0.9 cM away from Rf3. Marker E3P1, 2.4 cM from Rf3, and E12M7, 1.8 cM from Rf3, were converted into a codominant CAPS and a dominant SCAR marker, and designated as CAPSE3P1 and SCARE12M7, respectively. These markers are useful for marker-assisted selection and map-based cloning of the Rf3 gene.  相似文献   

15.
Warty fruit is one of the highly valuable external quality traits related to the market values of cucumber. Genetic analysis has shown that a single dominant gene, Tu (Tuberculate fruit), determines the warty fruit trait in the cucumber plant. An F2 population (247 individuals) from the cross of S06 × S52 was used for the mapping of the Tu/tu locus. By combining bulked segregant analysis with the sequence-related amplified polymorphism (SRAP) and simple sequence repeat (SSR) markers, 15 markers (9 SRAPs and 6 SSRs) linked to the Tu/tu locus were identified. Of nine SRAP markers, three closely linked to the Tu/tu locus were successfully converted into sequence characterized amplified region (SCAR) markers. The Tu/tu locus was mapped between the co-dominant SSR marker SSR16203 and the SCAR marker C_SC933, at a genetic distance of 1.4 and 5.9 cM, respectively. Then the linked SSR markers in the study were used as anchor loci to locate the Tu/tu locus on cucumber chromosome 5. Moreover, the validity analysis of the C_SC69 and C_SC24 markers was performed with 62 cucumber lines of diverse origins, showing that the two SCAR markers can be used for marker-assisted selection (MAS) of the warty fruit trait in cucumber breeding. The information provided in this study will facilitate the map-based cloning of the Tu/tu gene.  相似文献   

16.
DNA markers linked to a root-knot nematode resistance gene derived from wild peanut species have been identified. The wild diploid peanut accessions K9484 (Arachis batizocoi Krapov. & W. C. Gregory), GKP10017, (A. cardenasii Krapov & W. C. Gregory), and GKP10602 (A. diogoi Hoehne) possess genes for ressitance to Meloidogyne arenaria. These three accessions and A. hypogaea cv. Florunner were crossed to generate the hybrid resistant breeding line TxAg-7. This line was used as donor parent to develop a BC4F2 population segregating for resistance. Three RAPD markers associated with nematode resistance were identified in this population by bulked segregant analysis. Linkage was confirmed by screening 21 segregatingh BC4F2 and 63 BC5F2 single plants. Recombination between marker RKN410 and resistance, and between marker RKN440 and resistance, was estimated to be 5.4±1.9% and 5.8±2.1%, respectively, on a per-generation basis. These two markers identified a resistance gene derived from either A. cardenasii or A. diogoi, and were closely linked to each other. Recombination between a third marker, RKN229, inherited from A. cardenasii or A. diogoi, and resistance was 9.0±3.2% per generation. Markers RKN410 and RKN229 appeared to be linked genetically and flank the same resistance gene. All markers were confirmed by hybridization of cloned or gel-purified marker DNA to blots of PCR-amplified DNA. Pooled data on the segregation of BC5F2 plants was consistent with the presence of one resistance gene in the advanced breeding lines. Different distributions of resistance in the BC5F2 progeny and TxAG-7 suggest the presence of additional resistance genes in TxAG-7.  相似文献   

17.
Blackspot resistance in the tetraploid rose genotype 91/100–5 had been characterised previously as a single dominant gene in duplex configuration. In the present study a tetraploid progeny (95/3) segregating for the presence of the blackspot resistance gene Rdr1 were screened with 868 RAPD and 114 AFLP primers/primer combinations. Seven AFLP markers were found to be linked to Rdr1 at distances between 1.1 and 7.6 cM. The most closely linked AFLP marker was cloned and converted into a SCAR marker that could be screened in a larger population than the original AFLP and was linked at a distance of 0.76 cM. The cloned fragment was used as an RFLP probe to locate the marker on a chromosome map of diploid roses. This is the first report of markers linked to a resistance gene in roses, and the possibilities of using them for a marker-assisted selection for blackspot resistance as well as for map-based cloning approaches are discussed. Received: 23 December 1999 / Accepted: 25 March 2000  相似文献   

18.
Clubroot disease, caused by Plasmodiophora brassicae Wor., is highly damaging for Chinese cabbage. The CR (clubroot resistant) Shinki DH (doubled haploid) line of Chinese cabbage carries a single dominant gene, CRb, which confers resistance to the P. brassicae races 2, 4, and 8. An F2 population derived from a cross between the CR Shinki DH line and a susceptible line, 94SK, was used to map the CRb gene. Inoculation of F3 families with SSI (single-spore isolate) resulted in a 1:2:1 segregation ratio. Use of the AFLP technique combined with bulked segregant analysis allowed five co-dominant AFLP markers, and four and seven dominant AFLP markers linked in coupling and repulsion, respectively, to be identified. Six of the 16 AFLP markers showing low frequencies of recombination with the CRb locus among 138 F2 lines were cloned. A reliable conversion procedure allowed five AFLP markers to be successfully converted into CAPS and SCAR markers. An F2 population (143 plants) was analyzed with these markers and a previously identified SCAR marker, and a genetic map around CRb covering a total distance of 6.75 cM was constructed. One dominant marker, TCR09, was located 0.78 cM from CRb. The remaining markers (TCR05, TCR01, TCR10, TCR08, and TCR03) were located on the other side of CRb, and the nearest of these was TCR05, at a distance of 1.92 cM.Communicated by R. Hagemann  相似文献   

19.
Marker-assisted selection for two rust resistance genes in sunflower   总被引:5,自引:0,他引:5  
In this study we report on the identification of molecular markers, OX20600 and OO04950, linked to the geneR Adv in the proprietary inbred line P2. This gene confers resistance to most of the pathotypes of Puccinia helianthi identified in Australia. Analysis indicates these RAPD markers are linked to the resistance locus at 0.0 cM and 11 cM respectively. SCAR markers SCX20600 and SCO04950 derived from these two RAPD markers, and SCT06950 derived from a previously reported RAPD marker linked at 4.5 cM from the R 1 rust resistance gene were developed. SCX20600 and SCO04950 were linked at similar distances from their resistance locus as the RAPD markers. SCTO6950 co-segregated completely with rust resistance. The robustness of the R 1 SCAR marker was demonstrated through the amplification of the marker in a diverse range of sunflower germplasm considered to possess the R 1 gene. The SCAR markers forR Adv were not amplified in the sunflower rust differential set thereby supporting the contention that this is a novel resistance gene. They did amplify in a number of proprietary lines closely related to the line P2. This locus is under further investigation as it will be useful in our attempts to use molecular-assisted breeding to produce durable resistance in sunflower to P. helianthi.  相似文献   

20.
We have previously demonstrated that in the diploid rose population 97/9 resistance to the powdery mildew race 9 is controlled by a major dominant resistance gene, Rpp1. In the study reported here, we isolated several molecular markers closely linked to Rpp1 via bulked segregant analysis, with the gene being tagged in an interval of 5 cM between the two most adjacent markers. It was possible to convert the most closely linked amplified fragment length polymorphic (AFLP) marker into a sequence-characterised amplified region (SCAR) segregating in the same manner. Indirect mapping of Rpp1 in relation to the black spot resistance gene Rdr1 revealed no linkage between the two R genes. Furthermore, the genetic model based on a single dominant resistance gene was supported by the marker data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号