首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Summary The Mi gene originating from the wild tomato species Lycopersicon peruvianum confers resistance to all major root knot nematodes (Meloidogyne spp.). This single dominant gene is located on chromosome 6 and is very closely linked to the acid phosphatase-1 (Aps-1) locus. Resistance to nematodes has been introgressed into various cultivars of the cultivated tomato (L. esculentum), in many cultivars along with the linked L. peruvianum Aps-1 1 allele. By using a pair of nearly isogenic lines differing in a small chromosomal region containing the Mi and Aps-1 loci, we have identified two RFLP markers, GP79 and H6A2c2, which are located in the introgressed L. peruvianum region. Analysis of a test panel of 51 L. esculentum genotypes of various origins indicated that GP79 is very tightly linked to the Mi gene and allows both homozygous and heterozygous nematode-resistant genotypes to be distinguished from susceptible genotypes, irrespective of their Aps-1 alleles. Marker H6A2c2 is linked to the Aps-1 locus and is capable of discriminating between the L. peruvianum Aps-1 1 allele and the L. esculentum Aps-1 3 and Aps-1 + alleles. In combination, these RFLP markers may provide a powerful tool in breeding tomatoes for nematode resistance.  相似文献   

2.
Summary In the 1940's the root-knot nematode resistance gene (Mi) was introgressed into the cultivated tomato from the wild species, L. peruvianum, and today it provides the only form of genetic resistance against this pathogen. We report here the construction of a high resolution RFLP map around the Mi gene that may aid in the future cloning of this gene via chromosome walking. The map covers the most distal nine map units of chromosome 6 and contains the Mi gene, nine RFLP markers, and one isozyme marker (Aps-1). Based on the analysis of more than 1,000 F2 plants from four crosses, we were able to pinpoint the Mi gene to the interval between two of these markers — GP79 and Aps-1. In crosses containing the Mi gene, this interval is suppressed in recombination and is estimated to be 0.4 cM in length. In contrast, for a cross not containing Mi, the estimated map distance is approximately 5 times greater (ca. 2 cM).Using RFLP markers around Mi as probes, it was possible to classify nematode resistant tomato varieties into three types based on the amount of linked peruvianum DNA still present. Two of these types (representing the majority of the varieties tested) were found to still contain more than 5 cM of peruvianum chromosome — a result that may explain some of the negative effects (e.g. fruit cracking) associated with nematode resistance. The third type (represented by a single variety) is predicted to carry a very small segment of peruvianum DNA (<2 cM) and may be useful in the identification of additional markers close to Mi and in the orientation of clones during a chromosome walk to clone the gene.  相似文献   

3.
The root knot nematode resistance gene Mi in tomato has been mapped in the pericentromeric region of chromosome 6. With the objective of isolating Mi through a map-based cloning approach, we have previously identified and ordered into a high-resolution genetic linkage map a variety of tightly linked molecular markers. Using pulsed-field gelelectrophoresis and various rarely cutting restriction enzymes in single, double and partial digestions, we now report long-range physical maps of the two closest flanking markers, acid phosphatase-1 (Aps-1) and GP79, which span over 400 and 800 kb, respectively. It is concluded that the physical distance between both markers is larger than predicted on the basis of genetic linkage analysis. Furthermore, two RFLP markers (H3F8 and H4H10) which map genetically to the same locus as Aps-1 do not show physical linkage, indicating severe suppression of recombination in this region of the chromosome. Finally, no evidence was obtained showing the presence of a CpG island near Aps-1.  相似文献   

4.
Accessions of the wild tomato species L. peruvianum were screened with a root-knot nematode population (557R) which infects tomato plants carrying the nematode resistance gene Mi. Several accessions were found to carry resistance to 557R. A L. peruvianum backcross population segregating for resistance to 557R was produced. The segregation ratio of resistant to susceptible plants suggested that a single, dominant gene was a major factor in the new resistance. This gene, which we have designated Mi-3, confers resistance against nematode strains that can infect plants carrying Mi. Mi-3, or a closely linked gene, also confers resistance to nematodes at 32°C, a temperature at which Mi is not effective. Bulked-segregant analysis with resistant and susceptible DNA pools was employed to identify RAPD markers linked to this gene. Five-hundred-and-twenty oligonucleotide primers were screened and two markers linked to the new resistance gene were identified. One of the linked markers (NR14) was mapped to chromosome 12 of tomato in an L. esculentum/L. pennellii mapping population. Linkage of NR14 and Mi-3 with RFLP markers known to map on the short arm of chromosome 12 was confirmed by Southern analysis in the population segregating for Mi-3. We have positioned Mi-3 near RFLP marker TG180 which maps to the telomeric region of the short arm of chromosome 12 in tomato.  相似文献   

5.
With a view to cloning the root-knot nematode resistance gene Mi in tomato by chromosome walking, we have developed a molecular probe for the tightly linked acid phosphatase-1 (Aps-1) locus. The acid phosphatase-1 allozyme (APS-11), encoded by the Aps-1 1 allele originating from Lycopersicon peruvianum, was purified to apparent homogeneity from tomato roots and suspension cells. Microsequencing of CNBr and tryptic peptides generated from APS-11 provided a partial amino acid sequence, which accounted for approximately 23% of the protein and revealed two stretches of homology with soybean proteins KSH3 and VSP27, comprising 22 matches within 26 amino acid residues. The partial amino acid sequence information enabled us to isolate a 2.4 kb genomic Aps-1 1 sequence by means of the polymerase chain reaction (PCR), primed by degenerate pools of oligodeoxyribonucleotides, synthesized on the basis of the amino acid sequences. Synthesis of the 2.4 kb PCR product was specific for genomic templates carrying the L. peruvianum Aps-1 1 allele. Crucial to the priming specificity and the synthesis of the 2.4 kb genomic sequence was the use of degenerate primer pools in which the number of different primer species was limited by incorporating deoxyinosine phosphate residues at three and four base ambiguities. In using cDNA as a template, a 490 bp sequence was obtained, indicating a high proportion of intron sequences in the 2.4 kb genomic Aps-1 1 sequence. The Aps-1 1 origin of the PCR product was confirmed by RFLP (restriction fragment length polymorphism) analysis, using both a chromosome 6 substitution line and a pair of nearly isogenic lines, differing for a small chromosomal region around the Aps-1/Mi loci.  相似文献   

6.
Summary A new DNA polymorphism assay was developed in 1990 that is based on the amplification by the polymerase chain reaction (PCR) of random DNA segments, using single primers of arbitrary nucleotide sequence. The amplified DNA fragments, referred to as RAPD markers, were shown to be highly useful in the construction of genetic maps (RAPD mapping). We have now adapted the RAPD assay to tomato. Using a set of 11 oligonucleotide decamer primers, each primer directed the amplification of a genome-specific fingerprint of DNA fragments. The potential of the original RAPD assay to generate polymorphic DNA markers with a given set of primers was further increased by combining two primers in a single PCR. By comparing fingerprints of L. esculentum, L. pennellii, and the L. esculentum chromosome 6 substitution line LA1641, which carries chromosome 6 from L. pennellii, three chromosome 6-specific RAPD markers could be directly identified among the set of amplified DNA fragments. Their chromosomal position on the classical genetic map of tomato was subsequently established by restriction fragment length polymorphism (RFLP) linkage analysis. One of the RAPD markers was found to be tightly linked to the nematode resistance gene Mi.  相似文献   

7.
Near-isogenic lines (NILs) for the leaf rust resistance gene Lr9 were screened for polymorphisms at the molecular level. RAPD (random amplified polymorphic DNA) primers as well as RFLP (restriction fragment length polymorphism) markers were used. Out of 395 RAPD primers tested, three showed polymorphisms between NILs, i.e., an additional band was found in resistant lines. One of these polymorphic bands was cloned and sequenced. Specific primers were synthesized, and after amplification only resistant lines showed an amplified product. Thus, these primers define a sequence-tagged site that is specific for the translocated fragment carrying the Lr9 gene. A cross between a resistant NIL and the spelt (Triticum spelta) variety Oberkulmer was made, and F2 plants were analyzed for genetic linkage. All three polymorphisms detected by the PCR (polymerase chain reaction) and one RFLP marker (cMWG684) showed complete linkage to the Lr9 gene in 156 and 133 plants analyzed, respectively. A second RFLP marker (PSR546) was closely linked (8±2.4 cM) to the Lr9 gene and the other four DNA markers. As this marker maps to the distal part of the long arm of chromosome 6B of wheat, Lr9 and the other DNA markers also map to the distal region of 6BL. All three PCR markers detected the Lr9 gene in independently derived breeding lines and varieties, thus proving their general applicability in wheat breeding programs.  相似文献   

8.
We have cloned and sequenced six RAPD fragments tightly linked to the Tm-1 gene which confers tomato mosaic virus (ToMV) resistance in tomato. The terminal ten bases in each of these clones exactly matched the sequence of the primer for amplifying the corresponding RAPD marker, except for one in which the 5-endmost two nucleotides were different from those of the primer. These RAPD clones did not cross-hybridize with each other, suggesting that they were derived from different loci. From Southern-hybridization experiments, five out of the six RAPD clones were estimated to be derived from middle- or high-repetitive sequences, but not from any parts of the ribosomal RNA genes (rDNA), which are known to be tightly linked with the Tm-1 locus. The remaining clone appeared to be derived from a DNA family consisting of a few copies. These six RAPD fragments were converted to sequence characterized amplified region (SCAR) markers, each of which was detectable using a pair of primers having the same sequence as that at either end of the corresponding RAPD clone. All pairs of SCAR primers amplified distinct single bands whose sizes were the same as those of the RAPD clones. In four cases, the SCAR markers were present in the line with Tm-1 but absent in the line without it, as were the corresponding RAPD markers. In the two other cases, the products of the same size were amplified in both lines. When these SCAR products were digested with different restriction endonucleases which recognize 4-bp sequences, however, polymorphisms in fragment length were found between the two lines. These co-dominant markers are useful for differentiating heterozygotes from both types of homozygote.  相似文献   

9.
The Sw-5 locus confers dominant resistance to tomato spotted wilt virus (TSWV). To map the location and facilitate the identification of markers linked to Sw-5 we developed a pair of near-isogenic lines (NILs) and an F2 Lycopersicon esculentum x L. pennellii population segregating for resistance to TSWV. DNA from the NILs was analyzed using 748 random 10-mer oligonucleotides to discern linked molecular markers using a random amplified polymorphic DNA (RAPD) approach. One random primer (GAGCACGGGA) was found to produce a RAPD band of about 2200 bp that demonstrates linkage to Sw-5. Data from co-segregation of resistance and restriction fragment length polymorphisms (RFLPs) in a F2 interspecific population position Sw-5 between the markers CT71 and CT220 near the telomere of the long arm of chromosome 9.  相似文献   

10.
Resistance to verticillium wilt, a vascular disease causing yield losses in many crops, is conferred in tomato by a single dominant allele, Ve. A population segregating for the Ve allele was generated using near-isogenic tomato lines. Analysis of the parental tomato DNA using the polymerase chain reaction and 400 random primers, each 10 deoxyribonucleotides in length, produced 1,880 amplified DNA fragments. Of the four polymorphisms observed between the resistant and susceptible parental genotypes, only one was linked to the Ve gene. No recombination was observed between this DNA marker and the Ve locus, indicating that the linkage is less than 3.5±2.7 cM. The marker detected both the susceptible and resistant alleles, producing amplified DNA fragments of approximately 1,300 and 1,350 bp, respectively. The sequence of the primer, determined from cloned amplified products, was 5 CTCACATGCA 3 instead of the expected 5 CTCACATGCC 3. The marker will be of value to tomato breeding programs because of the tight linkage, Codominant nature, and analytical procedure utilized.  相似文献   

11.
Recombinant DNA techniques have been used to introduce agronomically valuable traits, including resistance to viruses, herbicides, and insects, into crop plants. Introduction of these genes into plants frequently involves Agrobacterium-mediated gene transfer. The potential exists for applying this technology to nematode control by introducing genes conferring resistance to nematodes. Transferred genes could include those encoding products detrimental to nematode development or reproduction as well as cloned host resistance genes. Host genes that confer resistance to cyst or root-knot nematode species have been identified in many plants. The best characterized is Mi, a gene that confers resistance to root-knot nematodes in tomato. A map-based cloning approach is being used to isolate the gene. For development of a detailed map of the region of the genome surrounding Mi, DNA markers genetically linked to Mi have been identified and analyzed in tomato lines that have undergone a recombination event near Mi. The molecular map will be used to identify DNA corresponding to Mi. We estimate that a clone of Mi will be obtained in 2-5 years. An exciting prospect is that introduction of this gene will confer resistance in plant species without currently available sources of resistance.  相似文献   

12.
A novel genic male sterile (GMS) line in Brassica napus L., which was identified in 1999, was found to be controlled by a monogenic dominant gene, which we have designated as MDGMS. The microspores of the MDGMS abort before the degradation of the tapetal cell layer. The F1 fertility from any fertile lines crossed with MDGMS segregated and the ratio was close to 1:1. Bulked segregation analysis (BSA) was employed to identify random amplified polymorphic DNA (RAPD) markers linked to the Ms gene in MDGMS. Among 880 random 10-mer oligonucleotide primers screened against the bulk DNA of sterile and fertile, one primer S243 (5′-CTATGCCGAC-3′) gave a repeatable 1500-bp DNA polymorphic segment S2431500 between the two bulks. Analysis of individual plants of each bulks and other types of GMS and cytoplasmic male sterility (CMS) lines suggest that the RAPD marker S2431500 is closely linked to the MDGMS locus in rapeseed. This RAPD marker has been converted into sequence characterized amplified region (SCAR) marker to aid identification of male-fertility genotypes in segregating progenies of MDGMS in marker-assisted selection (MAS) breeding programs.  相似文献   

13.
Linkage analysis was used to determine the genetic map location of er-1, a recessive gene conditioning resistance to powdery mildew, on the Pisum sativum genome. Genetic linkage was demonstrated between er-1 and linkage group 6 markers after analyzing the progeny of two crosses, an F2 population and a set of recombinant inbred lines. The classes of genetic markers surrounding er-1 include RFLP, RAPD and allozyme markers as well as the morphological marker Gty. A RAPD marker tightly linked to er-1 was identified by bulked segregant analysis. After DNA sequence characterization, specific PCR primers were designed to convert this RAPD marker into a sequence characterized amplified region (SCAR).  相似文献   

14.
 We report the molecular mapping of the py-1 gene for resistance to corky root rot [Pyrenochaeta lycopersici (Schneider and Gerlach)] in tomato using RAPD and RFLP marker analysis. DNA from near-isogenic lines (NILs) of tomato differing in corky root rot resistance was screened with 575 random oligonucleotide primers to detect polymorphic DNAs linked to py-1. Three primers (OPW-04, OPC-02, OPG-19) revealed polymorphisms between the NILs. Twelve resistant and eight susceptible DNA pools derived from segregating F3 families were used to confirm that the RAPD markers were linked to the py-1 gene. Two of the linked amplified fragments, corresponding to OPW-04 and OPC-02, were subsequently cloned and mapped on the tomato molecular linkage map as RFLPs. These clones were located between TG40 and CT31 on the short arm of chromosome 3. Further analysis with selected RFLP markers showed that 7% (8.8 cM) of chromosome 3 of the resistant line ‘Moboglan’ was introgressed from the L. peruvianum donor parent. Three RFLP markers (TG40, TG324, and TG479) from the introgressed part of chromosome 3 were converted to cleaved amplified polymorphism (CAP) markers for use in a polymerase chain reaction (PCR) assay. These PCR markers will allow rapid large-scale screening of tomato populations for corky root rot resistance. Received: 2 January 1998 / Accepted: 12 January 1998  相似文献   

15.
Anthracnose, caused by the fungusColletotrichum lindemuthianum, is a severe disease of common bean (Phaseolus vulgaris L.) controlled, in Europe, by a single dominant gene,Are. Four pairs of near-isogenic lines (NILs) were constructed, in which theAre gene was introgressed into different genetic backgrounds. These pairs of NILs were used to search for DNA markers linked to the resistance gene. Nine molecular markers, five RAPDs and four RFLPs, were found to discriminate between the resistant and the susceptible members of these NILs. A backcross progeny of 120 individuals was analysed to map these markers in relation to theAre locus. Five out of the nine markers were shown to be linked to theAre gene within a distance of 12.0 cM. The most tightly linked, a RAPD marker, was used to generate a pair of primers that specifically amplify this RAPD (sequence characterized amplified region, SCAR).The research was supported by the CNRS and the Ministère Français de l'Education Nationale  相似文献   

16.
Summary New linkage data are presented for the situation of five previously unlocated isozymic loci of the tomato and closely related species with homosequential chromosomes.Prx-1 lies on chromosome 1, where it is also linked withSkdh-1; Aps-2 is linked withGot-4 on chromosome 8;Tpi-2 has been allocated to chromosome 4; and a linkage has been detected betweenPgi-1 andEst-4, whose respective chromosome has not yet been determined. These and previously published data have been summarized in the form of an isozyme linkage map. Twenty-two loci have thus been mapped on nine of the twelve tomato chromosomes. We discuss some new applications of mapped isozymic genes. In certain types of segregations, isozymic genes are far more efficient than morphological markers in providing linkage information. They greatly expedite the cytogenetic investigation of species hybrids and can be utilized to facilitate backcross transfers of genes from wild to cultivated taxa.  相似文献   

17.
The Tm-2 gene and its alleles conferring tomato mosaic virus resistance in tomato originate from Lycopersicon peruvianum, a wild relative of tomato. DNA fragments of several RAPD markers tightly linked with the Tm-2 locus in tomato were successfully cloned and sequenced. Subsequently, the 24-mer oligonucleotide primer pairs of the SCAR markers corresponding to the RAPD markers were designed based on the 5’-endmost sequences. A fragment of the same size as that of a SCAR marker was amplified in the ToMV-susceptible tomato line with no Tm-2, but the digests of the PCR fragments by AccI exhibited polymorphism in fragment length between the two lines. We chose three SCAR markers and three RAPD markers tightly linked with the Tm-2 locus, and examined whether the same-sized fragments corresponding to these markers were also present in three other lines carrying Tm-2a or one of the other Tm-2 alleles. The fragments corresponding to the three SCAR markers were present in all of the three lines, but the other markers (three RAPDs ) were absent in one or two lines, suggesting that the three SCAR markers are closer to Tm-2 than the other markers. Comparison of the nucleotide sequences of these fragments revealed that they are all homologous to the corresponding SCAR markers. Received: 8 November 1999 / Accepted: 15 November 1999  相似文献   

18.
Bulked segregant analysis was employed to identify random amplified polymorphic DNA (RAPD) markers linked to the restorer gene (Rfo) used in theOgura radish cytoplasmic male sterility of rapeseed. A total of 138 arbitrary 10-mer oligonucleotide primers were screened on the DNA of three pairs of bulks, each bulk corresponding to homozygous restored and male sterile plants of three segregating populations. Six primers produced repeatable polymorphisms between paired bulks. DNA from individual plants of each bulk was then used as a template for amplification with these six primers. DNA polymorphisms generated by four of these primers were found to be completely linked to the restorer gene with the polymorphic DNA fragments being associated either with the fertility restorer allele or with the sterility maintainer allele. Pairwise cross-hybridization demonstrated that the four polymorphic DNA fragments did not share any homology. Southern hybridization of labelled RAPD fragments on digested genomic DNA from the same three pairs of bulks revealed fragments specific to either the male sterile bulks or to the restored bulks and a few fragments common to all bulks, indicating that the amplified sequences are low copy. The four RAPD fragments that were completely linked to the restorer locus have been cloned and sequenced to develop sequence characterized amplified regions (SCARs). This will facilitate the construction of restorer lines used in breeding programs and is the first step towards map-based cloning of the fertility restorer allele.  相似文献   

19.
Optimization of primer screening for evaluation of genetic relationship in 34 cultivars of rose through random amplified polymorphic DNA (RAPD) markers was investigated. Four series of decamer primers were used for screening and optimization of RAPD analysis between which A and N series performed good amplification of fragments as compared with other series. The primers OPN-07 and OPN-15 produced maximum number of DNA fragments in Rosa hybrida cv. Anuraag. Some primer either did not produce amplification or produced very poor amplification. Further, ten selected primers were used for genetic analysis of 34 rose cultivars. The primer OPN-15 amplified 21 fragments in all cultivars tested. A total of 162 distinct DNA fragments (bands) ranging from 100 to 3400 base pairs were amplified by using 10 selected random primers. The cluster analysis indicated that these rose cultivars formed nine clusters.  相似文献   

20.
Bulked segregant analysis was used to identify random amplified polymorphic DNA (RAPD) markers linked to the Sw-5 gene for resistance to tomato spotted wilt virus (TSWV) in tomato. Using two pools of phenotyped individuals from one segregating population, we identified four RAPD markers linked to the gene of interest. Two of these appeared tightly linked to Sw-5, whereas another, linked in repulsion phase, enabled the identification of heterozygous and susceptible plants. After linkage analysis of an F2 population, the RAPD markers were shown to be linked to Sw-5 within a distance of 10.5 cM. One of the RAPD markers close to Sw-5 was used to develop a SCAR (sequence characterized amplified region) marker. Another RAPD marker was stabilized into a pseudo-SCAR marker by enhancing the specificity of its primer sequence without cloning and sequencing. RAPD markers were mapped to chromosome 9 on the RFLP tomato map developed by Tanksley et al. (1992). The analysis of 13 F3 families and eight BC2 populations segregating for resistance to TSWV confirmed the linkage of the RAPD markers found. These markers are presently being used in marker-assisted plant breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号