首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Current culture methods based on monocultures under phototrophic regimes are prone to contamination, predation, and collapse. Native cultures of multiple species are adapted to the local conditions and are more robust against contamination and predation. Growth, lipid and biomass productivity of a Louisiana native coculture of microalgae (Chlorella vulgaris) and cyanobacteria (Leptolyngbya sp.) in heterotrophic and mixotrophic regimes were investigated. Dextrose and sodium acetate at C:N ratios of 15:1 and 30:1 under heterotrophic (dark) and mixotrophic (400 μmol m?2 s?1) regimes were compared with autotrophic controls. The carbon source and C:N ratio impacted growth and biomass productivity. Mixotrophic cultures with sodium acetate (C:N 15:1) resulted in the highest mean biomass productivity (156 g m?3 d?1) and neutral lipid productivity (24.07 g m?3 d?1). The maximum net specific growth rate (U) was higher (0.97 d?1) in mixotrophic cultures with dextrose (C:N 15:1) but could not be sustained resulting in lower total biomass than in mixotrophic cultures with acetate (C:N 15:1), with a U of 0.67 d?1. The ability of the Louisiana coculture to use organic carbon for biomass and lipid production makes it a viable feedstock for biofuels and bioproducts.  相似文献   

2.
Growing algae to scrub nutrients from manure presents an alternative to the current practice of land application and provides utilizable algal biomass as an end product. The objective of this study was to assess algal growth, nutrient removal, and nitrification using higher light intensities and manure loading rates than in the previous experiments. Algal turfs, with periphyton mainly composed of green algal species, were grown under two light regimes (270 and 390 μmol photons·m?2· s?1) and anaerobically digested flushed dairy manure wastewater (ADFDMW) loading rates ranging from 0.8 to 3.7 g total N and 0.12 to 0.58 g total P·m?2·d?1. Filamentous cyanobacteria (Oscillatoria spp.) and diatoms (Navicula, Nitzschia, and Cyclotella sp.) partially replaced the filamentous green algae at relatively high ADFDMW loading rates and more prominently under low incident light. Mean algal production increased with loading rate and irradiance from 7.6±2.71 to 19.1±2.73 g dry weight· m?2·d?1. The N and P content of algal biomass generally increased with loading rate and ranged from 2.9%–7.3% and 0.5%–1.3% (by weight), respectively. Carbon content remained relatively constant at all loading rates (42%–47%). The maximum removal rates of N and P per unit algal biomass were 70 and 13 mg·g?1 dry weight·m?2·d?1, respectively. Recovery of nutrients in harvested algal biomass accounted for about 31%–52% for N and 30%–59% for P. Recovery of P appeared to be uncoupled with N at higher loading rates, suggesting that algal potential for accumulation of P may have already been saturated. It appears that higher irradiance level enhancing algal growth was the overriding factor in controlling nitrification in the algal turf scrubber units.  相似文献   

3.
A major limiting factor in the development of algae as a feedstock for the bioenergy industry is the consistent production and supply of biomass. This study is the first to access the suitability of the freshwater macroalgal genus Oedogonium to supply biomass for bioenergy applications. Specifically, we quantified the effect of CO2 supplementation on the rate of biomass production, carbon capture, and feedstock quality of Oedogonium when cultured in large‐scale outdoor tanks. Oedogonium cultures maintained at a pH of 7.5 through the addition of CO2 resulted in biomass productivities of 8.33 (±0.51) g DW m?2 day?1, which was 2.5 times higher than controls which had an average productivity of 3.37 (±0.75) g DW m?2 day?1. Under these productivities, Oedogonium had a carbon content of 41–45% and a higher heating value of 18.5 MJ kg?1, making it an ideal biomass energy feedstock. The rate of carbon fixation was 1380 g C m?2 yr?1 and 1073.1 g C m?2 yr?1 for cultures maintained at a pH of 7.5 and 8.5, and 481 g C m?2 yr?1 for cultures not supplemented with CO2. This study highlights the potential of integrating the large‐scale culture of freshwater macroalgae with existing carbon waste streams, for example coal‐fired power stations, both as a tool for carbon sequestration and as an enhanced and sustainable source of bioenergy.  相似文献   

4.
Schizochytrium mangrovei strain PQ 6 was investigated for coproduction of docosahexaenoic acid (C22: 6ω‐3, DHA ) and squalene using a 30‐L bioreactor with a working volume of 15 L under various batch and fed‐batch fermentation process regimes. The fed‐batch process was a more efficient cultivation strategy for achieving higher biomass production rich in DHA and squalene. The final biomass, total lipid, unsaponifiable lipid content, and DHA productivity were 105.25 g · L?1, 43.40% of dry cell weight, 8.58% total lipid, and 61.66 mg · g?1 · L?1, respectively, after a 96 h fed‐batch fermentation. The squalene content was highest at 48 h after feeding glucose (98.07 mg · g?1 of lipid). Differences in lipid accumulation during fermentation were correlated with changes in ultrastructure using transmission electron microscopy and Nile Red staining of cells. The results may be of relevance to industrial‐scale coproduction of DHA and squalene in heterotrophic marine microalgae such as Schizochytrium .  相似文献   

5.
6.
Metal oxyhydroxide precipitates that form from acid mine drainage (AMD) may indirectly limit periphyton by sorbing nutrients, particularly P. We examined effects of nutrient addition on periphytic algal biomass (chl a), community structure, and carbon and nitrogen content along an AMD gradient. Nutrient diffusing substrata with treatments of +P, +NP and control were placed at seven stream sites. Conductivity and SO4 concentration ranged over an order of magnitude among sites and were used to define the AMD gradient, as they best indicate mine discharge sources of metals that create oxyhydroxide precipitates. Aqueous total phosphorous (TP) ranged from 2 to 23 μg · L?1 and significantly decreased with increasing SO4. Mean chl a concentrations at sites ranged from 0.2 to 8.1 μg · cm?2. Across all sites, algal biomass was significantly higher on +NP than control treatments (Co), and significantly increased with +NP. The degree of nutrient limitation was determined by the increase in chl a concentration on +NP relative to Co (response ratio), which ranged from 0.6 to 9.7. Response to nutrient addition significantly declined with increasing aqueous TP, and significantly increased with increasing SO4. Thus, nutrient limitation of algal biomass increased with AMD impact, indicating metal oxyhydroxides associated with AMD likely decreased P availability. Algal species composition was significantly affected by site but not nutrient treatment. Percent carbon content of periphyton on the Co significantly increased with AMD impact and corresponded to an increase in the relative abundance of Chlorophytes. Changes in periphyton biomass and cellular nutrient content associated with nutrient limitation in AMD streams may affect higher trophic levels.  相似文献   

7.
Predictions of how salt marsh primary production and carbon storage will respond to environmental change can be improved through detailed datasets documenting responses to real‐world environmental variation. To address a shortage of detailed studies of natural variation, we examined drivers of Spartina alterniflora stem allometry and productivity in seven marshes across three regions in southern Louisiana. Live‐stem allometry varied spatially and seasonally, generally with short stems weighing more (and tall stems weighing less) in the summer and fall, differences that persist even after correcting for flowering. Strong predictive relationships exist between allometry parameters representing emergent stem mass and mass accumulation rates, suggesting that S. alterniflora populations navigate a trade‐off between larger mass at emergence and faster rates of biomass accumulation. Aboveground production and belowground production were calculated using five and four approaches, respectively. End‐of‐season aboveground biomass was a poor proxy for increment‐based production measures. Aboveground production (Smalley) ranged from 390 to 3,350 g m?2 year?1 across all marshes and years. Belowground production (max–min) was on average three times higher than aboveground; total production ranged from 1,400 to 8,500 g m?2 year?1. Above‐ and belowground production were both positively correlated with dissolved nutrient concentrations and negatively correlated to salinity. Synthesis: Interannual variation in water quality is sufficient to drive above‐ and belowground productivity. The positive relationship between nutrients and belowground production indicates that inputs of nutrients and freshwater may increase salt marsh carbon storage and ecosystem resilience to sea level rise.  相似文献   

8.
1. Surface ecosystems provide the primary source of organic matter to many cave communities. Variation in the strength of connectivity to the surface suggests that some caves may be more resource‐limited than others. To test this, we examined diet, prey availability and production of an obligate cave salamander Gyrinophilus palleucus (Plethodontidae), a top predator, in two south‐eastern U.S.A. caves with different levels of organic matter (Tony Sinks cave, 165 g AFDM m?2; Bluff River cave, 62 g AFDM m?2). 2. We quantified density, biomass, growth rate, production and diet of G. palleucus monthly for 21 months. Diet composition, differences in prey communities and seasonal patterns in prey consumption were also analysed. 3. Salamander density, biomass and secondary production were significantly greater in the high organic matter cave (0.10 m?2, 0.18 g AFDM m?2, 0.12 g AFDM m?2 year?1) than in the low organic matter cave (0.03 m?2, 0.03 g AFDM m?2, 0.01 g AFDM m?2 year?1). Although growth rates were not statistically different between the two cave salamander populations, low recaptures probably influenced this result. 4. Isopoda prey were the major contributor to salamander production in the high organic matter cave (69%). In the low organic matter cave, production was provided by isopods (41%) and oligochaetes (20%). The lower number of prey taxa contributing to salamander production in the high organic matter cave suggests the ability to forage more selectively. 5. The differences in foraging strategy, density, biomass and secondary production were probably related to differences in the strength of surface connectivity, which controls organic matter supply. Links between basal resource level and top predator performance show the importance of bottom‐up limitation in the food webs of caves and other detritus‐based ecosystems.  相似文献   

9.
A routine sampling technique has been developed using artificial styrofoam substrate to estimate benthic algal productivity in the littoral zone of lakes. Estimation of maximum carbon fixed in Lake Tahoe ranged from 11.1 mg C·m?2· day?1 at 0.5 m to 17.1 mg C·m?2· day?1 at 1.0 m. Estimates were made for communities composed of both diatom and green algal populations in water between 0.5 and 3.0 m. Maximum productivity occurred between 1–2 m. The technique developed can give comparable estimates of productivity if adequate replication is undertaken to decrease problems associated with periphytic heterogeneity.  相似文献   

10.
The biochemical contents and biodiesel production ability of three microalgal strains grown under different sodium nitrate, sodium carbonate, and ferric ammonium citrate (iron) levels were investigated. The highest biomass and lipid contents were found in Scenedesmus sp., Chlorella sp., and Chlamydomonas sp. when grown in normal BG‐11 containing sodium carbonate concentration at 0.03 g · L?1, and in normal BG‐11 containing iron concentration (IC) at 0.009 or 0.012 g · L?1. Increasing the sodium nitrate level increased the biomass content, but decreased the lipid content in all three microalgae. Among the three microalgae, Scenedesmus sp. showed the highest total lipid yield of 0.69 g · L?1 under the IC of 0.012 g · L?1. Palmitic and oleic acids were the major fatty acids of Scenedesmus sp. and Chlamydomonas sp. lipids. On the other hand, Chlorella sp. lipids were rich in palmitic, oleic, and linolenic acids, and henceforth contributing to poor biodiesel properties below the standard limits. The three isolated strains had a potential for biodiesel production. Nevertheless, Scenedesmus sp. from stone quarry pond water was the most suitable source for biodiesel production with tolerance toward the high concentration of sodium carbonate without the loss of its biodiesel properties.  相似文献   

11.
Light effect on cultures of microalgae has been studied mainly on single species cultures. Cyanobacteria have photosynthetic pigments that can capture photons of wavelengths not available to chlorophylls. A native Louisiana microalgae (Chlorella vulgaris ) and cyanobacteria (Leptolyngbya sp.) co‐culture was used to study the effects of light quality (blue–467 nm, green–522 nm, red–640 nm and white–narrow peak at 450 nm and a broad range with a peak at 550 nm) at two irradiance levels (80 and 400 μmol m?2 s?1) on the growth, species composition, biomass productivity, lipid content and chlorophyll‐a production. The co‐culture shifted from a microalgae dominant culture to a cyanobacteria culture at 80 μmol m?2 s?1. The highest growth for the cyanobacteria was observed at 80 μmol μmol m?2 s?1 and for the microalgae at 400 μmol m?2 s?1. Red light at 400 μmol m?2 s?1 had the highest growth rate (0.41 d?1), biomass (913 mg L?1) and biomass productivity (95 mg L?1 d?1). Lipid content was similar between all light colors. Green light had the highest chlorophyll‐a content (1649 μg/L). These results can be used to control the species composition of mixed cultures while maintaining their productivity.  相似文献   

12.
The seaweed Ulva lactuca L. was spray cultured by mariculture effluents in a mattress‐like layer, held in air on slanted boards by plastic netting. Air‐agitated seaweed suspension tanks were the reference. Growth rate, yield, and ammonia‐N removal rate were 11.8% · d?1, 171 g fresh weight (fwt) · m?2 · d?1, and 5 g N · m?2 · d?1, respectively, by the spray‐cultured U. lactuca, and 16.9% · d?1, 283 g fwt · m?2 · d?1, and 7 g N · m?2 · d?1, respectively, by the tank U. lactuca. Biomass protein content was similar in both treatments. Dissolved oxygen in the fishpond effluent water was raised by >3 mg · L?1 and pH by up to half a unit, upon passage through both culture systems. The data suggest that spray‐irrigation culture of U. lactuca in this simple green‐mattress‐like system supplies the seaweed all it needs to grow and biofilter at rates close to those in standard air‐agitated tank culture.  相似文献   

13.
In this study, the anaerobic performance and stability of coffee husk and pulp with and without trace element (TE) supplement was investigated, using 20 L mesophilic continuous stirred tank reactors for 140 days of experiment (DOE). The TE was cocktail of trace metals composed of Fe, Ni, Zn, Co, Mn, Mo, Se W and B. The organic loading rate (OLR) was increased stepwise from 2.5 (HRT = 40 d) to 6.0 kg VS m?3 d? 1(HRT = 16.7 d). The highest methane productivity from pulp with and without TE was 1.272 and 0.965 m3 m?3 d?1 at an OLR of 6.0 and 5.0 kg VS m?3 d?1; while the husks performed 0.895 and 0.795 m3 m?3 d?1 respectively, both at an OLR of 6.0 kg VS m?3 d?1. The specific methane yield (SMY) of pulp (at OLR = 5 kg VS m?3 d?1) with and without TEs was 217.9 ± 4.7 and 193.1 ± 8.2 L kg?1 VS; while husk yielded 149.2 ± 6.0 and 132.5 ± 4.9 L kg?1 VS, respectively. The effect of TEs on SMY was statistically significant (p < 001) at higher OLRs (5.0 ‐ 6.0 kg VS m?3 d?1). The TEs improved the anaerobic stability through an optimum alkalinity ratio (VFA/TIC < 0.3) and suppressed the accumulation of volatile fatty acids. Mono digestion of husks and pulp are prone to lack Mo, Zn, Ni and Fe in long‐term anaerobic fermentation. Further studies on co‐digestion of husk/pulp with animal manure and dry fermentation helps to efficiently use this biomass resource.  相似文献   

14.
15.
16.
Semi-continuous algal cultivation was completed in outdoor flat-panel photobioreactors (panels) and open raceway ponds (raceways) from February 17 to May 7, 2015 for side-by-side comparison of areal productivities at the Arizona Center for Algae Technology and Innovation in Mesa, AZ, USA. Experiments used two strains of Scenedesmus acutus (strains LB 0414 and LB 0424) to assess productivity, areal density, nutrient removal, and harvest volume across cultivation systems and algal strains. Panels showed an average biomass productivity of 19.0?±?0.6 g m?2 day?1 compared to 6.62?±?2.3 g m?2 day?1 for raceways. Photosynthetic efficiency ranged between 1.32 and 2.24 % for panels and between 0.30 and 0.68 % for raceways. Panels showed an average nitrogen consumption rate of 38.4?±?8.6 mg N L?1 day?1. Cultivation in raceways showed a consumption rate of 3.8?±?2.5 and 7.1?±?4.2 mg N L?1 day?1 for February/March and April/May, respectively, due to increase in biomass productivity. Excess nutrients were required to prevent a decrease in productivity. Daily biomass harvest volumes between 18 and 36 % from panels did not affect culture productivity, but density decreased with increased harvest volume. High cultivation temperatures above 30 °C caused strain LB 0414 to lyse and crash. Strain LB 0424 did not show any difference in biomass productivity when peak temperatures reached 34, 38, or 42 °C, but showed decreased productivity when the peak temperature during cultivation was 30 °C. Using algal strains with different temperature tolerances can generate increased annual biomass productivity.  相似文献   

17.
Reduced light availability for benthic primary producers as a result of anthropogenic activities may be an important driver of change in coastal seas. However, our knowledge of the minimum light requirements for benthic macroalgae limits our understanding of how these changes may affect primary productivity and the functioning of coastal ecosystems. This knowledge gap is particularly acute in deeper water, where the impacts of increased light attenuation will be most severe. We examined the minimum light requirements of Anotrichium crinitum, which dominates near the maximum depth limit for macroalgae throughout New Zealand and Southern Australia, and is a functional analog of rhodophyte macroalgae in temperate low‐light (deep‐water) habitats throughout the world. These data show that A. crinitum is a shade‐adapted seaweed with modest light requirements for the initiation of net photosynthesis (1.49–2.25 μmol photons · m?2 · s?1) and growth (0.12–0.19 mol photons · m?2 · d?1). A. crinitum maintains high photosynthetic efficiency and pigment content and a low C:N ratio throughout the year and can maintain biomass under sub‐compensation (critical) light levels for at least 5 d. Nevertheless, in situ photon flux is less than the minimum light requirement for A. crinitum on at least 103 d per annum and is rarely sufficient to saturate growth. These findings reinforce the importance of understanding the physiological response of macroalgae at the extremes of environmental gradients and highlight the need to establish minimum thresholds that modification of the subtidal light environment should not cross.  相似文献   

18.
Lipid content and lipid class composition were determined in stream periphyton and the filamentous green algae Cladophora sp. and Spirogyra sp, Sterols and phospholipids were compared to chlorophyll a (chl a) as predictors of biomass for stream periphyton and algae. Chlorophyll a, phospholipids, and sterols were each highly correlated with ash-free dry mass (AFDM) (r2 > 0.98). Stream periphyton exposed naturally to high light (HL) and low light (LL) had chl a concentrations (μg chl a-mg?1AFDM) of 7.9± 0.7 and 12.4 ± 2.9, respectively, while the sterol concentrations of these HL and LL stream periphyton (1.6 ± 0.4) were not significantly different (P > 0.05). Periphyton exposed to an irradiance of 300 μmol photons·m?2s?1 in the laboratory for 60 h had 5.6 ± 0.55 μg chl a·mg?1 AFDM, but the same periphyton exposed to 2% incident light for the same amount of time had 11.0 ± 0.56 μg chl mg?1 AFDM. Sterol concentrations in these periphyton communities remained unchanged (1.5 ± 0.3 μg·mg?1AFDM), Similar results (i.e. changes in chl a but stability of sterol concentrations in response to irradiance changes) were also found for Cladophora and Spirogyra in laboratory experiments. Sterols can be quantified rapidly from a few milligrams of algae and appear to be a useful predictor of eukaryote biomass, whereas cellular levels of chl a vary substantially with light conditions. Phospholipids (or phospholipid fatty acids) are considered to be a reliable measure of viable microbial biomass. Nevertheless, phospholipid content varied substantially and unpredictably among algae and periphyton under different light regimes. Irradiance also had a significant effect on storage lipids: HL Cladophora and HL periphyton had 2 × and 5 × greater concentrations of triacylglycerols, respectively, compared to their LL forms. HL and LL algae also differed in the concentration of several major fatty acids. These light-induced changes in algal lipids and fatty acids have important implications for grazers.  相似文献   

19.
An experimental study was carried out to compare the performance of selected anaerobic high rate reactors operated simultaneously at 37?°C. The three reactors, namely upflow anaerobic sludge bed reactor (UASB), hybrid of UASB reactor and anaerobic filter (anaerobic hybrid reactor – AHR) and anaerobic baffled reactor (ABR), were inoculated with the anaerobic digested sludge from municipal wastewater treatment plant and tested with synthetic wastewater. This wastewater contained sodium acetate and glucose with balanced nutrients and trace elements (COD 6000?mg?·?l?1). Organic loading rate (B v ) was increased gradually from an initial 0.5?kg?·?m?3?·?d?1 to 15?kg?·?m?3?·?d?1 in all the reactors. From the comparison of the reactors' performance, the lowest biomass wash-out resulted from ABR. In the UASB, significant biomass wash-out was observed at the B v 6?kg?·?m?3?·?d?1, and in the AHR at the B v 12?kg?·?m?3?·?d?1. The demand of sodium bicarbonate for pH maintenance in ABR was two times higher as for UASB and AHR. The efficiency of COD removal was comparable for all three reactors – 80–90%. A faster biomass granulation was observed in the ABR than in the other two reactors. This fact is explained by the kinetic selection of filamentous bacteria of the Methanotrix sp. under a high (over 1.5?g?·?l?1) acetate concentration.  相似文献   

20.
Wetlands are the single largest natural source of atmospheric methane (CH4), a greenhouse gas, and occur extensively in the northern hemisphere. Large discrepancies remain between “bottom‐up” and “top‐down” estimates of northern CH4 emissions. To explore whether these discrepancies are due to poor representation of nongrowing season CH4 emissions, we synthesized nongrowing season and annual CH4 flux measurements from temperate, boreal, and tundra wetlands and uplands. Median nongrowing season wetland emissions ranged from 0.9 g/m2 in bogs to 5.2 g/m2 in marshes and were dependent on moisture, vegetation, and permafrost. Annual wetland emissions ranged from 0.9 g m?2 year?1 in tundra bogs to 78 g m?2 year?1 in temperate marshes. Uplands varied from CH4 sinks to CH4 sources with a median annual flux of 0.0 ± 0.2 g m?2 year?1. The measured fraction of annual CH4 emissions during the nongrowing season (observed: 13% to 47%) was significantly larger than that was predicted by two process‐based model ensembles, especially between 40° and 60°N (modeled: 4% to 17%). Constraining the model ensembles with the measured nongrowing fraction increased total nongrowing season and annual CH4 emissions. Using this constraint, the modeled nongrowing season wetland CH4 flux from >40° north was 6.1 ± 1.5 Tg/year, three times greater than the nongrowing season emissions of the unconstrained model ensemble. The annual wetland CH4 flux was 37 ± 7 Tg/year from the data‐constrained model ensemble, 25% larger than the unconstrained ensemble. Considering nongrowing season processes is critical for accurately estimating CH4 emissions from high‐latitude ecosystems, and necessary for constraining the role of wetland emissions in a warming climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号