首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of organic carbon,C:N ratio and light on the growth and lipid productivity of microalgae/cyanobacteria coculture
Authors:Athens Silaban  Rong Bai  M Teresa Gutierrez‐Wing  Ioan I Negulescu  Kelly A Rusch
Institution:1. Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, USA;2. Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, USA;3. School of Human Ecology, Louisiana State University and Ag Center, Baton Rouge, LA, USA
Abstract:Current culture methods based on monocultures under phototrophic regimes are prone to contamination, predation, and collapse. Native cultures of multiple species are adapted to the local conditions and are more robust against contamination and predation. Growth, lipid and biomass productivity of a Louisiana native coculture of microalgae (Chlorella vulgaris) and cyanobacteria (Leptolyngbya sp.) in heterotrophic and mixotrophic regimes were investigated. Dextrose and sodium acetate at C:N ratios of 15:1 and 30:1 under heterotrophic (dark) and mixotrophic (400 μmol m?2 s?1) regimes were compared with autotrophic controls. The carbon source and C:N ratio impacted growth and biomass productivity. Mixotrophic cultures with sodium acetate (C:N 15:1) resulted in the highest mean biomass productivity (156 g m?3 d?1) and neutral lipid productivity (24.07 g m?3 d?1). The maximum net specific growth rate (U) was higher (0.97 d?1) in mixotrophic cultures with dextrose (C:N 15:1) but could not be sustained resulting in lower total biomass than in mixotrophic cultures with acetate (C:N 15:1), with a U of 0.67 d?1. The ability of the Louisiana coculture to use organic carbon for biomass and lipid production makes it a viable feedstock for biofuels and bioproducts.
Keywords:Coculture  Lipid productivity  Microalgal productivity  Mixotrophic growth
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号