首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epithelium of the small intestine is composed of a single layer of cells that line two functionally distinct compartments, the villi that project into the lumen of the gut and the crypts that descend into the underlying connective tissue. Stem cells are located in crypts, where they divide and give rise to transit-amplifying cells that differentiate into secretory and absorptive epithelial cells. Most differentiated cells travel upwards from the crypt towards the villus tip, where they shed into the lumen. While some of these cell behaviors are an intrinsic property of the epithelium, it is becoming evident that tight coordination between the epithelium and the underlying fibroblasts plays a critical role in tissue morphogenesis, stem-cell niche maintenance and regionalized gene expression along the crypt-villus axis. Here, we will review the current literature describing the interaction between epithelium and fibroblasts during crypt-villus axis development and intestinal epithelium renewal during homeostasis.  相似文献   

2.
K Kobayashi 《Acta anatomica》1992,143(2):109-117
The three-dimensional relationship between the epithelial cell layer and the underlying connective tissue core (CTC) of the foliate papilla of the rabbit tongue was studied by scanning electron microscopy after removal of the epithelial cell layer. The foliate papillae were fixed in Karnovsky's fixative, and the epithelial cell layers were exposed to long-term hydrochloric acid treatment (3.5 N HCl for 2-3 weeks at room temperature). The foliate papillae consisted of ridges and grooves located on the posterolateral margin of the tongue. They appeared as linear projections or ridges of lingual mucosa roughly perpendicular to the longitudinal axis of the tongue. These projections or ridges were parallel to one another and separated by grooves. After removal of the epithelium, two kinds of CTC folds appeared: one was the septal fold of CTC which runs in the central portion under each linear projection or ridge, and the other consisted of two sheets of groove side folds of CTC which run along both sides of the former and face the groove side epithelium. It was revealed that there are two sheets of septal epithelial processes, and each of them fits in between each septal fold and groove side fold of CTC. Numerous taste buds were located in the groove side epithelia, and their pores faced the surface of the groove. On the hollow surfaces that appeared on the surface of the groove side fold of CTC after removal of the epithelial cells with taste buds, nerve-terminal-like structures were encountered. Some openings of the ducts of small lingual glands were arranged linearly on the underside of the basal portion of each groove side epithelium.  相似文献   

3.
The colonic mucosal tissue provides a vital barrier to luminal antigens. This barrier is composed of a monolayer of simple columnar epithelial cells. The colonic epithelium is dynamically turned over and epithelial cells are generated in the stem cell containing crypts of Lieberkühn. Progenitor cells produced in the crypt-bases migrate toward the luminal surface, undergoing a process of cellular differentiation before being shed into the gut lumen. In order to study these processes at the molecular level, we have developed a simple method for the microdissection of two spatially distinct regions of the colonic mucosa; the proliferative crypt zone, and the differentiated surface epithelial cells. Our objective is to isolate specific crypt and surface epithelial cell populations from mouse colonic mucosa for the isolation of RNA and protein.  相似文献   

4.
目的:检测低温条件下用螯合剂沉淀法分离的小鼠小肠上皮隐窝和绒毛细胞是否具有生化完整性.方法:使用螯合剂在低温(冰浴)条件下分离和富集小肠上皮绒毛和隐窝细胞;抽提DNA、RNA和总蛋白,用电泳的方法检测完整性;用Real-time PCR检测溶菌酶Lysozyme的表达以判断隐窝、绒毛细胞富集程度.结果:低温条件下分离的肠上皮隐窝、绒毛细胞形态完整;基因组DNA完整,未出现明显的DNA ladder现象;富集细胞的RNA完整;富集隐窝、绒毛细胞的蛋白未降解,两组总蛋白具有表达谱差异性;隐窝细胞富集物溶菌酶mRNA表达水平较绒毛细胞富集物高30倍以上.结论:小肠隐窝绒毛的生物学性状可在低温螯合剂沉底法分离过程中得到保存,提示此方法可以用来分析生理和创伤痛理条件下小肠上皮基因和蛋白表达改变.  相似文献   

5.
The histological, ultrastructural and histochemical characteristics of the lingual epithelium of the rat snake (Elaphe climacophora) were investigated by light and transmission electron microscopy. The cells in the beta-layer of the epithelium of the bifurcated apex were filled with beta-keratin fibers and an amorphous matrix. Round projections covering the surface of the epithelial cells, namely, microfacets which contained pale granules, were clearly visible on the outer faces of Oberh?utchen cells on the epithelium, and they were identified as fine granules filled with lipid. These granules might play an important role as a coating on the surface of the bifurcated lingual apex. The lipid on the surface of the lingual apex might also serve to trap and retain odorant molecules. Keratohyalin-like granules were distributed within the a-layer of the epithelium of the bifurcated apex of the tongue in the resting phase and cellular interdigitation was well developed in this region. Evidence of a shedding line was apparent under the light microscope in the cleft between outer and inner epithelial generations. The epithelial surface of the body of the tongue appeared suitable for retention of odorant and other molecules.  相似文献   

6.
By using the method of Bjerknes and Cheng, isolated murine gastrointestinal epithelial sheets were prepared for scanning electron microscopy. Examination of isolated epithelium from fundic stomach revealed numerous branched gastric glands. Parietal cells were easily detected bulging from the basal surface of the glandular epithelium. The basal surface membrane of parietal cells appeared smooth, with only sparse microvilluslike projections, whereas adjacent glandular cells had numerous 1- to 2-micron fingerlike projections which interdigitated laterally with similar processes from adjacent cells. Occasionally, paracrinelike cells having long cytoplasmic processes ranging from 10 to 20 micron in length were observed on the basal epithelial surface of the stomach and the colon, but not the small intestine. In isolated intestinal epithelia, the basal surface of crypt epithelial cells showed extensive cytoplasmic interdigitations, but no distinct morphology permitting recognition of individual cell types. Various stages of intestinal crypt bifurcation were seen. Craterlike spaces in the basal surface of crypt epithelium, presumably due to migrating leukocytes, were also numerous. Examination of the luminal surface of the isolated intestinal epithelium revealed that intimate associations between epithelium and mucosal-associated microorganisms were maintained, thus suggesting that minimal alterations in surface morphology were incurred by epithelial isolation. These observations on epithelial structure suggest that isolated gastrointestinal epithelia may be well suited for physiological studies of epithelial function and interactions with the microbial flora.  相似文献   

7.
Summary Crypt, but not villus, goblet cells in the ileum accelerate their secretion of mucus within 5 min following cholinergic stimulation. This study was done to determine whether the macromolecular permeability and structure of occluding junctions in the ileum are altered during accelerated secretion. Rats were injected intravenously with horseradish peroxidase followed by carbachol (250 g/kg, subcutaneous) and the intestinal mucosa was fixed 3–12 min later. In control mucosa (saline-injected), peroxidase filled lateral intercellular spaces up to the occluding junctions of both crypt and villus epithelium, but did not enter occluding junctions or pass into the lumen. In 3 of 8 carbachol-stimulated rats, peroxidase was present within occluding junctions in crypt epithelium and in the crypt lumen, although all intermembrane junctional fusion sites appeared intact. Villus epithelial occluding junctions, in contrast, continued to exclude peroxidase. In freeze-fracture replicas of crypt cells prepared after carbachol stimulation, we detected no structural changes in strand networks of occluding junctions that could account for increased paracellular permeability.  相似文献   

8.
The Hedgehog (Hh) pathway plays multiple patterning roles during development of the mammalian gastrointestinal tract, but its role in adult gut function has not been extensively examined. Here we show that chronic reduction in the combined epithelial Indian (Ihh) and Sonic (Shh) hedgehog signal leads to mislocalization of intestinal subepithelial myofibroblasts, loss of smooth muscle in villus cores and muscularis mucosa as well as crypt hyperplasia. In contrast, chronic over-expression of Ihh in the intestinal epithelium leads to progressive expansion of villus smooth muscle, but does not result in reduced epithelial proliferation. Together, these mouse models show that smooth muscle populations in the adult intestinal lamina propria are highly sensitive to the level of Hh ligand. We demonstrate further that Hh ligand drives smooth muscle differentiation in primary intestinal mesenchyme cultures and that cell-autonomous Hh signal transduction in C3H10T1/2 cells activates the smooth muscle master regulator Myocardin (Myocd) and induces smooth muscle differentiation. The rapid kinetics of Myocd activation by Hh ligands as well as the presence of an unusual concentration of Gli sties in this gene suggest that regulation of Myocd by Hh might be direct. Thus, these data indicate that Hh is a critical regulator of adult intestinal smooth muscle homeostasis and suggest an important link between Hh signaling and Myocd activation. Moreover, the data support the idea that lowered Hh signals promote crypt expansion and increased epithelial cell proliferation, but indicate that chronically increased Hh ligand levels do not dampen crypt proliferation as previously proposed.  相似文献   

9.
Abstract. Cell proliferation kinetics of the extrahepatic bile duct were studied by flash and cumulative labelling methods and immunohistochemical techniques. We compared the cell kinetics of the epithelium of the intra- and extra-pancreatic bile ducts and of the bile duct of the ampulla in rats administered intraperitoneally with bromodeoxyuridine (BrdUrd). After a single injection of BrdUrd (flash labelling), labelled cells appeared in the lower portion of the downgrowths of the epithelium in the intra-and extra-pancreatic bile ducts. A gradual accumulation of the labelled cells at the surface epithelium was observed during the cumulative labelling. After cumulative labelling the labelled cells gradually decreased in number and were finally confined to the degenerative cell zone of the surface epithelium 30 days later. Similarly, after a single injection of BrdUrd, the labelled cells in the bile duct of the ampulla appeared at the lower half of the crypt from where they migrated to the upper portion during cumulative labelling. These findings indicate that epithelial cells of the bile duct are renewed at the lower portion of the downgrowths of the epithelium, or crypt, and shed from the surface epithelium or upper portion of the fold. The labelling indices reached 23.83 ± 7.47% in the intra-pancreatic bile duct, 14.74 ± 7.99% in the extra-pancreatic bile duct and 43.42 ± 4.40% in the bile duct of the ampulla at the end of 70 h cumulative labelling. The fluctuating values of the labelling index were higher in the bile duct of the ampulla than in the intra- or extra-pancreatic bile ducts. These results indicate that the bile-duct epithelium undergoes a slower renewal rate than the other parts of the gastrointestinal tract, and that the renewal time of the epithelial cells is shorter at the bile duct of the ampulla than at the intra- or extra-pancreatic bile ducts.  相似文献   

10.
The anterior alimentary tract of Diclidophora merlangi is composed of a complex series of morphologically distinct epithelia interconnected by septate desmosomes and penetrated by the openings of numerous unicellular glands. The mouth and buccal cavity are lined by an infolding of modified body tegument, distinguished by uniciliate sense receptors, buccal gland openings, and in the buccal region by a dense, spiny appearance. The prepharynx is covered by an irregularly folded epithelium and, for part of its length, by the luminal cytoplasm of the prepharyngeal gland cells. The epithelium is syncytial and pleiomorphic, and regional variation in structure is common. A separate epithelium invests the lips of the pharynx and its free surface is greatly amplified by numerous, dense lamellae of varying dimensions. The lip epithelium is continuous with cytoplasmic processes of cells located external to the pharynx. A further, distinct epithelium borders the pharynx lumen and is composed of discrete cytoplasmic units connected by short septate desmosomes. The oesophagus is lined by a modified caecal epithelium, lacking haematin cells, and, in places, is perforated by the openings of oesophageal gland cells; it is continuous with the syncytial connecting tissue of the gut caeca.  相似文献   

11.
Escherichia coli O157:H7 culture filtrate (O157CF) produced colonic and renal lesions in mice following intraperitoneal or intravenous injection. Colonic lesions were characterized by death and sloughing of both surface and crypt epithelial cells, leading to loss of the mucous membrane and subsequent occult colonic hemorrhage. Several areas of severe colonic damage existed where loss of the epithelium and lamina propria was complete, leaving only the submucosal and smooth muscle layers intact. The colon was the only portion of the gastrointestinal tract affected by O157CF. Renal lesions were characterized by marked vacuolation and general necrosis of proximal convoluted tubular cells, and the presence of numerous exfoliated renal epithelial cells in the lumina of distal convoluted and collecting tubules. A neurogenic response was demonstrated by paralysis of the animals' rear extremities. The mouse was a useful model for detecting and studying in vivo the toxic properties of O157CF.  相似文献   

12.
The intestinal environment accommodates a wide range of contents ranging from harmless beneficial dietary and microbial flora to harmful pathogenic bacteria. This has resulted in the development of highly adapted epithelial cells lining the intestine. This adaptation involves the potential of crypt cells to proliferate and to constantly replace villous cells that are lost due to maturity or death. As a result, the normal intestinal epithelial integrity and functions are maintained. This phenomenon is eminent in intestinal defense whereby the intestinal epithelial cells serve as a physical barrier against luminal agents. The protection against agents in the gut lumen can only be effective if the epithelium is intact. Restitution of the damaged epithelium is therefore crucial in this type of defense.  相似文献   

13.
Summary A three-dimensional histoculture of wet stratified squamous epithelium of rat lingual frenulum was cultured on a liquid-air interface. The tissue retained its morphology for many days in culture. During this period the vast majority of the epithelial cells remained viable and exhibited dye (lucifer yellow) coupling in all living epithelial strata. Dye coupling was determined using two methods: the conventional intracellular injection method, and a new method—“cut-loading.” In the cut-loading method, an incision is made in the epithelium in the presence of dye, and intracellular diffusion of dye throughout the epithelium was measured using confocal microscopy. The basolateral surface of the lingual frenulum also acted as a substrate for neuroblastoma cells to grow without exogenously added trophic factors. These neuroblastoma cells grow neurites that establish contacts with epithelial cells. This preparation can serve as a model for investigating interactions among epithelial cells and between nerves and epithelial cells.  相似文献   

14.
The surface architecture of the olfactory rosette ofHeteropneustes fossilis (Bloch) has been studied by scanning electron microscopy. The olfactory rosette is an oval structure composed of a number of lamellae arranged pinnately on a median raphe. The raphe is invested with epithelial cells and pits which represent goblet cell openings. On the basis of cellular characteristics and their distribution the lateral surface of each olfactory lamella is identified as sensory, ciliated non-sensory and non-ciliated non-sensory epithelium. The sensory epithelium is provided with receptor and supporting cells. The ciliated non-sensory epithelium is covered with dense cilia obscuring the presence of other cell types. The non-ciliated non-sensory epithelium is with many polygonal areas containing cells.  相似文献   

15.
The normal intestinal epithelium is renewed with a turnover rate of 3–5 days. During Salmonella infection increased cell loss is observed, possibly as a result of programmed cell death (PCD). We have, therefore, studied the effects of Salmonella Typhimurium infection on three elements involved in PCD: caspase-3 activation, c-Jun phosphorylation on serine 63 (both detected by immunocytochemistry), and DNA fragmentation (detected by TUNEL reaction), using a pig jejunal loop model. Additionally, we used nuclear staining for detecting signs of classical apoptosis. Activated caspase-3 was detected in scattered epithelial cells and the number of positive cells increased with increasing times of exposure to Salmonella (P<0.0001). An increase in phospho-c-Jun in epithelial cells was already detectable 5 min after infection and often occurred in cells that appeared not to be invaded by the organism. Changes in caspase-3 activation and c-Jun phosphorylation were most marked in the proximal region of the jejunum. Although rarely observed in the epithelium, proper TUNEL-positive cells were frequently found in the intestinal lumen. Some, but not all, TUNEL-positive cells were also positive for caspase-3, indicating that both caspase-3-dependent and -independent pathways of PCD increased upon infection.  相似文献   

16.
The amphibian tongue contains two types of papilla which are believed to function in gustation and in the secretion of salivary fluid. Scanning electron microscopy reveals that columnar, filiform papillae are compactly distributed over nearly the entire dorsal surface of the tongue of the frog, Rana cancrivora, and fungiform papillae are scattered among the filiform papillae. Microridges and microvilli are distributed on the epithelial cell surface of the extensive area of the filiform papillae. Light microscopy shows that the apex of each filiform papilla is composed of stratified columnar and/or cuboidal epithelium and its base is composed of simple columnar epithelium. Transmission electron microscopy reveals that most of the epithelium of the filiform papillae is composed of cells that contain numerous round electron-dense granules 1–3 μm in diameter. Cellular interdigitation is well developed between adjacent cells. On the free-surface of epithelial cells, microridges or microvilli are frequently seen. Between these granular cells, a small number of ciliated cells, mitochondria-rich cells and electron-lucent cells are inserted. In some cases, electron-dense granules are present in the ciliated cells. At higher magnification, the electron-dense granules appear to be covered with patterns of spots and tubules. Overall, the morphology and ultrastructure of the lingual epithelium of the three species of Rana that have been studied are quite similar, but they can be easily distinguished from those of Bufo japonicus. Therefore, it appears that lingual morphology is phylogenetically constrained among members of the predominantly freshwater genus Rana to produce uniformity of papillary structure and this morphology persists in Rana cancrivora despite the distinct saline environment in which it lives. © 1993 Wiley-Liss, Inc.  相似文献   

17.
Synthesis of peroxidase was induced in the uterine epithelium of immature rats by multiple doses over a 24–96-h period of either 17 β-estradiol, the estrogen-antagonist Parke-Davis CI-628, or a combination of estradiol plus antagonist. Endogenous peroxidase activity first appeared in the cisternae of the rough endoplasmic reticulum of surface epithelial and glandular cells within 24–48 after the initial injection. Uterine peroxidase activity was also visible in the cisternae of the Golgi apparatus, in Golgi-derived secretory granules, and within the uterine and glandular lumen. Some cells of the epithelium produced little or no peroxidase, even after 96 h. Whereas the antagonist appeared to induce synthesis and secretion of peroxidase, neither the antagonist alone nor the combined treatment (estradiol plus antagonist) reproduced the estradiol-mediated growth in organ size and increased lumen diameter.  相似文献   

18.
The tongue of the striped dolphin, Stenella coeruleoalba, shows a V-shaped row of pits on its posterior dorsum. Their development is described on the basis of macroscopic and light microscopic observations on fetal, young, and adult stages. Four to eight pits occur, most often five in the adult. Anlagen of the pits first protrude as round epithelial thickenings which later increase in diameter and become thin. The circular primordia then sink, and grooves oriented both circularly and radially develop in the walls of the shallow pits thus formed. Pits and grooves deepen with development so that older pits become lined with conical projections. As pits grow further, they become elongated anterolaterally, retaining slit-like openings. Each pit in the adult is 2–8 mm long and about 1 mm wide. The pits are not derived from lingual gland ducts but develop independently. Taste buds resembling those of other mammalian tongues can be found in young dolphins but are few in number and limited to the thin epithelium of the pit projections and to that of the side wall of the pits. They first appear in the late prenatal period but degenerate in the adult. A rich nerve supply is observable in the lamina propria below taste buds in the calf. The pits and their projections in the dolphin correspond to the vallate papillae of other mammals, but whether each projection or a whole pit corresponds to a single vallate papilla is undecided.  相似文献   

19.
The morphogenesis of filiform papillae on rat tongue was investigated with the electron microscope. Tongue rudiments were first seen on the 12th day of gestation. At 15-17 days, dermal papillae had formed and were arranged in hexagonal array on the dorsal lingual surface. Capping each dermal papilla was a two-layered epithelium that protruded slightly above the lingual surface, thus forming the early filiform papilla. In the next stage of development, at 18-19 days of gestation, the epithelium lining the papilla had differentiated into two cell populations, one producing hard keratin, the other producing soft keratin. Some of the keratinized epithelial cells assumed a position at an acute angle to the tongue surface and extended deep into the epithelium. In the next stage, 20-21 days, a cleft appeared within these angularly oriented cells. This resulted in the division of the epithelium into keraatin-lined individual filiform papillae. Finally, the individual papillae increased in size to the adult form.  相似文献   

20.
Dividing epithelial cells in the mouse small intestine were examined by thin-section electron microscopy with special attention given to the mode of cytokinesis. As the columnar epithelial cells entered mitosis in the crypt, they became rounded, maintaining their junctional complexes with neighboring cells while detaching themselves from the basal lamina. In such rounded cells the mitotic apparatus was formed with its long axis parallel to the luminal surface. Replicated centrioles moved down from the apical region to locate themselves lateral to the nucleus, where they served as the poles of the mitotic spindle. During mitosis the cell retained microvilli on its luminal surface, though the terminal web became much thinner. At telophase the formation of a cleavage furrow proceeded asymmetrically from the basal side alone, and thus the contractile ring which was prominent at the base of the furrow, merged with the terminal web. Eventually, an intercellular bridge with a midbody was formed on the luminal surface. The space in the furrow was occupied by the flattened cytoplasmic processes of the neighboring cells. The tight junction was also seen on the basolateral surface of the intercellular bridge with the underlying neighboring cells. At very late telophase the intercellular bridge was disconnected from the neighboring cells and protruded into the lumen. These observations have led us to propose a mode by which the simple columnar epithelium maintain the tight junctional seal during cell division in the crypt of the small intestinal epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号