首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
哺乳动物的肠上皮组织具备快速和强大的自我更新能力,以适应与肠内容物中众多有害物质和微生物的直接接触。基因的转录后调控是肠上皮组织维持稳态的重要机制之一。RNA结合蛋白HuR在细胞中的主要功能是调节靶向基因转录本的稳定性和翻译,密切参与肠道黏膜病理生理调节。本综述将重点介绍HuR在维持肠上皮完整性方面的生物学作用,尤其是HuR在调节肠上皮细胞更新、肠道黏膜修复以及肠壁通透性方面的最新发现和研究进展;并深入分析HuR与其它RNA结合蛋白以及非编码RNA (包含微小RNA和长链非编码RNA)之间的相互作用在肠上皮稳态调节中的共同作用。随着RNA结合蛋白和非编码RNA研究领域的不断深入,肠上皮组织稳态的转录后调控将为如何在特定病理条件下保护肠上皮的治疗提供新的线索。  相似文献   

2.
哺乳动物肠上皮是一种拥有快速自我更新能力的组织,在维持机体免疫稳态与肠道应激后的损伤修复中发挥重要作用。源于隐窝底部的多能肠干细胞不断进行增殖、迁移与分化,并沿隐窝 绒毛轴向上移动,从而维持肠上皮完整性。该过程受严格而复杂的基因调控网络参与。越来越多的数据表明,肠上皮完整性受到广泛的非编码RNA的调控,主要包括肠黏膜再生、保护与上皮屏障功能等方面。本文重点讨论了两类非编码RNA(包括microRNAs和lncRNAs)转录后调控肠上皮屏障功能的研究进展。其中,miR-503、miR-146和lnc-uc.173、lnc-SPRY4-IT1、lnc-plncRNA1、lnc-Gata6等,能够促进肠黏膜的更新,增强上皮屏障功能;相反,miR-222、miR-29b、miR-195和lnc-H19与lnc-BC012900等,抑制肠上皮再生并破坏肠上皮屏障功能。miRNAs、mRNAs与lncRNAs间构成复杂的分子网络,共同调控肠上皮稳态。深入研究与肠上皮相关的miRNAs和IncRNAs分子及其作用机制,探寻引起肠黏膜炎症的关键分子靶标,为肠道炎症临床诊治提供新方向与新方法。  相似文献   

3.
哺乳动物肠上皮是一种拥有快速自我更新能力的组织,在维持机体免疫稳态与肠道应激后的损伤修复中发挥重要作用。源于隐窝底部的多能肠干细胞不断进行增殖、迁移与分化,并沿隐窝 绒毛轴向上移动,从而维持肠上皮完整性。该过程受严格而复杂的基因调控网络参与。越来越多的数据表明,肠上皮完整性受到广泛的非编码RNA的调控,主要包括肠黏膜再生、保护与上皮屏障功能等方面。本文重点讨论了两类非编码RNA(包括microRNAs和lncRNAs)转录后调控肠上皮屏障功能的研究进展。其中,miR-503、miR-146和lnc-uc.173、lnc-SPRY4-IT1、lnc-plncRNA1、lnc-Gata6等,能够促进肠黏膜的更新,增强上皮屏障功能;相反,miR-222、miR-29b、miR-195和lnc-H19与lnc-BC012900等,抑制肠上皮再生并破坏肠上皮屏障功能。miRNAs、mRNAs与lncRNAs间构成复杂的分子网络,共同调控肠上皮稳态。深入研究与肠上皮相关的miRNAs和IncRNAs分子及其作用机制,探寻引起肠黏膜炎症的关键分子靶标,为肠道炎症临床诊治提供新方向与新方法。  相似文献   

4.
环境温度的变化影响野生啮齿动物的消化道形态与功能。小肠是吸收营养成分的主要部位,其结构和功能具有可塑性。为了解小肠黏膜的结构和功能对环境温度变化的响应机制,以布氏田鼠为研究对象,比较了低温组和常温组动物小肠黏膜的组织结构和小肠黏膜免疫相关细胞的数目。结果显示:(1)低温组布氏田鼠的十二指肠、空肠和回肠的绒毛长度及绒毛长度与隐窝深度的比值均高于对照组;(2)低温驯化使布氏田鼠小肠上皮内淋巴细胞的数量增加;(3)低温驯化使布氏田鼠十二指肠、空肠和回肠的杯状细胞数量均显著增加。结果表明,在低温环境下布氏田鼠的小肠黏膜结构和免疫细胞的数量发生了可塑性变化,这可能与低温环境下的高能量需求和免疫功能的变化有关。  相似文献   

5.
旨在研究阿霉素诱导引起的DNA损伤压力下,肝癌细胞Hep G2中参与DNA损伤应答的mi RNA,并分析这些mi RNA靶基因参与肝癌DNA损伤应答相关的生物学进程与通路。通过小RNA测序检测阿霉素处理肝癌细胞Hep G2前后mi RNA的差异表达情况,使用GO与KEGG通路富集方法对差异表达mi RNA靶基因进行功能富集分析。结果显示,共检测出显著表达差异mi RNA 68个,其中上调13个,下调55个。mi RNA靶基因的功能分析结果显示,53条mi RNAs靶基因显著富集于调控细胞增殖、细胞凋亡、细胞迁移和细胞周期等与DNA损伤应答以及肿瘤相关的生物进程和信号通路,包括p53信号通路、癌症通路、Wnt信号通路和MAPK信号通路等。研究表明,在阿霉素诱导下,Hep G2中的差异表达mi RNAs与DNA损伤相关的肿瘤生物学进程以及信号通路显著相关,预示这些mi RNAs在阿霉素引发的肝细胞癌DNA损伤应答中起着重要的作用。  相似文献   

6.
小肠上皮具有快速更新的能力,是研究成体干细胞的理想系统.小肠上皮由绒毛和隐窝两部分组成,而位于小肠隐窝底部的小肠干细胞是其持续更新的源泉.近年来,以Lgr5为代表的小肠干细胞标记物的发现、Lgr5+小肠干细胞的分离培养和多种转基因小鼠模型的出现,极大地促进了对小肠干细胞自我更新和分化调控的研究,使得人们可以更加深入地认识小肠干细胞命运决定的分子机制.本文简要综述了近年来人们对Wnt,BMP,Notch和EGF等信号如何在小肠干细胞命运调控中发挥作用的认识.  相似文献   

7.
目的:构建人耐药白血病细胞多药耐药基因-1小干扰RNA并研究其功能.方法:人工合成编码mdrl小发夹状双链RNA的DNA片段,与pSilencer4.1-CMV质粒连接构建RNAi真核表达栽体,采用脂质体介导法转染人耐药白血病细胞K562/A,经潮霉素B筛选转基因阳性克隆细胞,RT-PCR和Western Blotting检测转基因细胞中mdrl基因的表达量,MTT法检测转基因细胞对阿霉素的敏感性.结果:RT-PCR结果显示,与未转基因组和阴性对照组比较,RNA干扰组mdrl基因在mRNA水平上表达量降低43.55%;Western Blotting检测显示,RNA干扰组mdrl基因在蛋白水平上表达量降低69.46%;MTT法检测显示mdrl干扰细胞对化疗药物柔红霉素的敏感性提高23倍.结论:mdrl小发夹状RNA可显著抑制K562/A细胞中的mdrl基因的表达,提高白血病细胞对化疗药物的敏感性,对白血病多药耐药性的逆转和白血病的治疗具有重要理论和实际意义.  相似文献   

8.
肠道不仅是营养物质消化吸收的主要部位,也是重要的免疫器官和内分泌器官.小肠上皮细胞的分化对于肠道应激后的损伤修复、免疫屏障以及肠道功能的正常行使具有非常重要的意义.近年来,肠道上皮隐窝-绒毛轴干细胞自我更新、分化和调控的研究得到了快速发展.本文结合本研究组的研究成果综述了哺乳动物肠道隐窝-绒毛轴上皮细胞分化过程中差异基因和蛋白表达;信号通路、转录因子和表观遗传修饰对肠上皮细胞分化的影响以及营养因子对肠道细胞分化和损伤修复调控的最新研究进展,以期在营养学和药理学方面,为干预和治疗肠道损伤及相关疾病提供理论指导依据.  相似文献   

9.
炎症细胞诱导的活性氧类生成和肠道氧化应激与慢性炎症性肠疾病以及结直肠肿瘤的发病密切相关。NF-κB信号通路参与氧化应激反应以及在结直肠炎症和肿瘤发生中的作用还并不完全清楚。本研究将化学合成一对编码小干扰RNA 序列、靶向人NF-κB 基因的长60 bp寡核苷酸链定向克隆至pSUPER小干扰RNA表达载体中,通过单酶切、双酶切及测序证实重组RNA干扰载体构建成功. 将构建成功的质粒转染至结肠上皮细胞HCT116中敲减p65,分别采用Western blot方法检测NF-κB p65蛋白表达水平,(3-(4,5-二甲基噻唑-2)-3,5-二苯基四氮唑溴盐(MTT)方法检测细胞存活情况. 结果显示,pSUPER-NF-κB p65载体可特异性下调NF-κB p65蛋白表达;下调p65表达可导致过氧化氢诱导的HCT116内活性氧类物质生成增高,存活细胞数目显著减少,氧化损伤加重。研究表明,在人结肠上皮细胞内NF-κB p65通路的抑制显著加重了结肠上皮细胞氧化损伤情况.  相似文献   

10.
目的:探讨CC类趋化因子配体2(C-C motif ligand 2,CCL2)对人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVECs)中细胞间粘附分子-1(intercellular adhesion molecule-1,ICAM-1)表达的影响。方法:体外分离培养HUVECs细胞,将HUVECs铺至6孔板中,待细胞融合至80-90%时,将CCL2过表达载体[pc DNA3.1(+)-CCL2]及CCL2小分子干扰RNA(si-RNA)分别转染到HUVECs中,于转染后12 h、24 h和48 h收集细胞进行RNA及蛋白提取。荧光定量PCR方法检测HUVECs中CCL2及ICAM-1基因m RNA表达。Western blotting检测HUVECs中CCL2及ICAM-1蛋白表达。结果:(1)与pc DNA3.1(+)组相比较,pc DNA3.1(+)-CCL2组中CCL2基因m RNA和蛋白水平均显著升高;与si-Control组相比较,si-CCL2组中CCL2基因m RNA和蛋白表达均明显下降。(2)与对照组比较,pc DNA3.1(+)-CCL2组明显增加HUVECs中ICAM-1的m RNA及蛋白表达,而si-CCL2组显著抑制HUVECs中ICAM-1的m RNA及蛋白表达。结论:CCL2能增加HUVECs中ICAM-1基因m RNA和蛋白表达,为深入认识动脉粥样硬化的发病机制提供了理论依据。  相似文献   

11.
The relationship between Golgi and cell surface membranes of intestinal cells was studied. These membranes were isolated from intestinal crypt cells and villus cells. The villus cell membranes consisted of microvillus membrane, a Golgi-rich fraction, and two membrane fractions interpreted as representing lateral-basal membranes. The villus cell microvillus membrane was purified by previously published techniques while the other membranes were obtained from isolated cells by differential centrifugation and density gradient velocity sedimentation. The two membrane fractions obtained from villus cells and considered to be lateral-basal membranes were enriched for Na+,K+-ATPase activity, but one also showed enrichment in glycosyltransferase activity. The Golgi membrane fraction was enriched for glycosyltransferase activity and had low to absent Na+,K+-ATPase activity. Adenylate cyclase activity was present in all membrane fractions except the microvillus membrane but co-purified with Golgi rather than lateral-basal membranes. Electron microscopy showed that the Golgi fraction consisted of variably sized vesicles and cisternalike structures. The two lateral-basal membrane fractions showed only vesicles of smaller, more uniform size. After 125I labeling of isolated intact cells, radioactivity was found associated with the lateral-basal and microvillus membrane fractions and not with the Golgi fraction. Antibody prepared against lateral-basal membrane fractions reacted with the surface membrane of isolated villus cells. The membrane fractions from isolated crypt cells demonstrated that all had high glycosyltransferase activity. The data show that glycosyltransferase activity, in addition to its Golgi location, may be a significant property of the lateral-basal portion of the intestinal villus cell plasma membrane. Data obtained with crypt cells support earlier data and show that the crypt cell surface membrane possesses glycosyltransferase activity.  相似文献   

12.
Neural and paracrine agents, such as dopamine, epinephrine, and histamine, affect intestinal epithelial function, but it is unclear if these agents act on receptors directly at the enterocyte level. The cellular localization and villus-crypt distribution of adrenergic, dopamine, and histamine receptors within the intestinal epithelium is obscure and needs to be identified. Single cell populations of villus or crypt epithelial cells were isolated from the jejunum of adult guinea pigs. Enterocytes were separated from intraepithelial lymphocytes by flow cytometry and specific binding was determined using fluorescent probes. Alpha1-adrenergic receptors were located on villus and crypt intraepithelial lymphocytes and enterocytes. Beta-adrenergic receptors were found on villus and crypt enterocytes. Dopamine receptors were found on all cell types examined, whereas histamine receptors were not detected (<10% for each cell population). These studies demonstrated that (1) receptors for epinephrine and dopamine exist on epithelial cells of the guinea pig jejunum, (2) beta-adrenergic receptors are found primarily on villus and crypt enterocytes and (3) intraepithelial lymphocytes contain alpha1-adrenergic, but have few beta-adrenergic, receptors. The presence of neural receptors suggests that these agents are acting, at least in part, at the enterocyte or intraepithelial lymphocyte levels to modulate intestinal and immune function.  相似文献   

13.
Fractions of isolated epithelial cells were harvested from a segment of porcine jejunum by ten successive incubations with a chelating buffer. The cell fractions showed a progressive decrease in the activity of the brush-border enzymes, alkaline phosphatase and sucrase, with increasing incubation number but a progressive increase in the ability to incorporate labelled thymidine into DNA. Fractions enriched in cells from the crypt region (fractions 9 and 10) contained higher concentrations per mg protein of somatostatin-like immunoreactivity (1.8-fold), glucagon-like immunoreactivity (5.3-fold) and serotonin (3.0-fold) than fractions enriched in cells from the villus tip (fractions 1 and 2). Analysis of extracts of the fractions by gel filtration/radioimmunoassay showed that somatostatin-28 represented the predominant molecular form of somatostatin-like immunoreactivity in all cell fractions but the relative proportion of somatostatin-14 (and related metabolites) to somatostatin-28 was significantly higher (P less than 0.05) in fractions enriched in villus cells (fraction 1 and 2) than in fractions enriched in crypt cells (fractions 5-10). This result suggests that metabolism of somatostatin-28 to somatostatin-14 takes place during migration of the D cell from the crypt base to the villus tip. Heterogeneity in the somatostatin-14 region of the chromatograms indicates that the peptide may be further metabolized by the action of aminopeptidases.  相似文献   

14.
Ionizing irradiation induces severe damage to the intestinal crypt cells which are responsible for renovation and maintenance of the intestinal cellular architecture. Therefore, protection of intestinal cells and tissue against lethal irradiation using a semiquinone glucoside derivative (SQGD) isolated from radioresistant bacterium Bacillus sp. INM-1 is the prime focus of the present investigation. BALB/c mice were administered by SQGD (50?mg/kg.b.wt. i.p.) 2?h before whole body irradiation (10?Gy), and histological analysis of the jejunum section was carried out and compared to the irradiated mice. Significant (p?<?0.0001) increase in villus length, number of cells per villus, crypts numbers per villus section, total cells counts and mitotic cell counts per crypt and low goblet cells per villus section, and low apoptotic index per crypt section were observed in the irradiated mice pre-treated by SQGD at 48–168?h. Significant induction in NF-kβ at 24?h and Bcl-2/Bax ratio was observed in irradiated mice pre-treated by SQGD compared to only irradiated animals. SQGD pre-treatment before irradiation was found instrumental to reverse the radiation-induced degenerative changes by replenishment of the damaged cells by enhancing mitotic, proliferating, pro-survival, and apoptosis inhibitory activities probably through modulation of cell cycle arrest in G1/S phase in the intestinal cellular milieu.  相似文献   

15.
Rat small intestinal epithelial cell lines have been established in vitro and subcultured serially for periods up to 6 mo. These cells have an epithelioid morphology, grow as monolayers of closely opposed polygonal cells, and during the logarithmic phase of growth have a population doubling time of 19--22 h. Ultrastructural studies revealed the presence of microvilli, tight junctions, an extensive Golgi complex, and the presence of extracellular amorphous material similar in appearance to isolated basement membrane. These cells exhibit a number of features characteristic of normal cells in culture; namely, a normal rat diploid karyotype, strong density inhibition of growth, lack of growth in soft agar, and a low plating efficiency when seeded at low density. They did not produce tumors when injected in syngeneic animals. Immunochemical studies were performed to determine their origin using antisera prepared against rat small intestinal crypt cell plasma membrane, brush border membrane of villus cells and isolated sucrase-isomaltase complex. Antigenic determinants specific for small intestinal epithelial (crypt and villus) cells were demonstrated on the surface of the epithelioid cells, but they lacked immunological determinants specific for differentiated villus cells. An antiserum specifically staining extracellular material surrounding the cells cultured in vitro demonstrated cross-reactivity to basement membrane in rat intestinal frozen sections. It is concluded that the cultured epithelioid cells have features of undifferentiated small intestinal crypt cells.  相似文献   

16.
Summary Suspensions of sequentially isolated villus and crypt cells were obtained in order to study certain biochemical changes associated with differentiation of epithelial cells in the small intestine of the mouse. Microscopic observation of the various cell fractions reveals that the epithelial cells detach as individual cells or small sheets of epithelium from the tip to the base of the villus, whereas cells in the crypt regions are separated as entire crypt units. The isolated cells retain their ultrastructural integrity as judged by electron microscopy. Chemical characterization of the various fractions shows that the total cellular protein content, expressed in activity per cell, remains relatively constant throughout the villus region followed by a noticeable drop in the crypt zone. On the other hand, sharp variations in values of cell DNA content are observed in the crypt zone depending on the reference of activity being used. Activity profiles of several brush border enzymes confirm the biochemical changes that occur during the migration of cells from the crypt to the villus tip, as observed in other species, with maximum activity of sucrase in the mid-villus region, of glucoamylase, trehalase, lactase and maltase in the upper third region, and of alkaline phosphatase at the villus tip. Forty-eight-hour suspension cultures of cell fractions corresponding to cells at the base of the villus and crypt zones show a moderate decrease in protein and enzyme activities to approximately 70% of their original value, with DNA content remaining stable throughout the incubation period. The use of biochemical activities as indicators of cellular integrity during cell culture is discussed.Supported by a research grant from the Medical Research Council of Canada (J.H.)  相似文献   

17.
The major sialic acid containing glycolipid has been isolated from rat intestinal mucosa. Characterization of this ganglioside by thin layer and gas chromatographic analysis indicates that it is an hematoside (GM3) with the major portion of the sialic acid in the N-glycolyl form. The distribution of this ganglioside was determined in villus and crypt cells isolated from rat intestine. The hematoside content of crypt cells was found to be significantly decreased when compared to villus cells. CMP-sialic acid:lactosylceramide sialyltransferase, responsible for the sialylation of lactosylceramide, was measured in differentiated villus and undifferentiated crypt cells and found to be greatly reduced in the crypt cell fraction. The present study demonstrates that marked differences in ganglioside content and biosynthesis occur in contiguous populations of cells in varying states of differentiation when isolated from normal rat intestine.  相似文献   

18.
3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase, E.C. 1.1.1.34), the major rate-limiting enzyme of the sterol biosynthetic pathway, was studied in ileal epithelial cells isolated in a villus-to-crypt gradient according to Weiser (Weiser, M. M. 1973. J. Biol. Chem, 248:2536-2541). Alkaline phosphatase (E.C. 3.1.3.1) served as a marker for the mature villus cells. Protease effects on activity determinations were negligible. The intracellular location of HMG-CoA reductase could not be precisely determined. The activity of ileal reductase was predominantly associated with the less differentiated lower villus and crypt cells, while the reverse gradient occurred with alkaline phosphatase. This distribution of enzymes persisted in both fed and fasted rats injected with control saline-phosphate, although fasting decreased total reductase units in the ileum by 86% in 72 hr. Treatment with cholestyramine and with 4-aminopyrazolo[3,4-d]pyrimidine (APP) enhanced reductase activity in ileal cells. The percent stimulation in both cases was higher in the upper villus cells than in the crypt cells, leading to abolition of the gradient in enzyme activity. However, APP treatment caused a 98% loss in total alkaline phosphatase units and a 55% loss in total epithelial cell protein in 72 hr. Thus, there was no increase in total reductase units. These data show that APP affects ileal cell metabolism directly. Furthermore, it appears that the regulation of sterol synthesis in the intestinal mucosa, via HMG-CoA reductase, involves a complex interplay of the effects exerted by the level of alimentation, the enterohepatic circulation of bile, and the levels of plasma lipoproteins.  相似文献   

19.
Gut apical Na(+)-glucose cotransporter 1 (SGLT1) activity is high at the birth and during suckling, thus contributing substantially to neonatal glucose homeostasis. We hypothesize that neonates possess high SGLT1 maximal activity by expressing apical SGLT1 protein along the intestinal crypt-villus axis via unique control mechanisms. Kinetics of SGLT1 activity in apical membrane vesicles, prepared from epithelial cells sequentially isolated along the jejunal crypt-villus axis from neonatal piglets by the distended intestinal sac method, were measured. High levels of maximal SGLT1 uptake activity were shown to exist along the jejunal crypt-villus axis in the piglets. Real-time RT-PCR analyses showed that SGLT1 mRNA abundance was lower (P < 0.05) by 30-35% in crypt cells than in villus cells. There were no significant differences in SGLT1 protein abundances on the jejunal apical membrane among upper villus, middle villus, and crypt cells, consistent with the immunohistochemical staining pattern. Higher abundances (P < 0.05) of total eukaryotic initiation factor 4E (eIF4E) protein and eIE4E-binding protein 1 γ-isoform in contrast to a lower (P < 0.05) abundance of phosphorylated (Pi) eukaryotic elongation factor 2 (eEF2) protein and the eEF2-Pi to total eEF2 abundance ratio suggest higher global protein translational efficiency in the crypt cells than in the upper villus cells. In conclusion, neonates have high intestinal apical SGLT1 uptake activity by abundantly expressing SGLT1 protein in the epithelia and on the apical membrane along the entire crypt-villus axis in association with enhanced protein translational control mechanisms in the crypt cells.  相似文献   

20.
A technique is presented which yields single cells and intact crypts in suspension from unfixed rat intestinal mucosal epithelium. Everted lengths of intestine were digested by 27 mM sodium citrate in phosphate-buffered saline (pH = 7.3) at 37 degrees C. Mucosal cells were dislodged by vibratory stress (hand vortexing) following incubation for prescribed intervals at 37 degrees C in 1.5 mM ethylenediamine tetraacetic acid (EDTA) and 0.5 mM dithiothreitol (dtt). Alkaline phosphatase determinations, phase microscopy, and in vivo and in vitro evaluations of tritiated thymidine ([3H]TdR) incorporation were performed on isolated intestinal cells. Data indicate that cells were sequentially derived from villus tip to crypt base as judged by cellular morphology, alkaline phosphatase activity/mg protein and radioactivity per microgram protein. Upon completion of the intestinal cell isolation assay, scanning electron microscopy of the remaining intestine revealed that approximately 95% of the crypt openings were vacant; the villi were totally denuded; the supporting structures, including the lamina propria, appeared intact. In vitro radiolabelling of intestinal cell fractions enriched with crypts revealed a linear incorporation of [3H]TdR from 0-60 min which was strongly influenced by the presence of foetal calf serum (FCS). Measurements of the compensatory response of the mucosa to resection of 70% of the small bowel indicated that the mucosal cell separation is capable of detecting alterations in crypt cell proliferation. Previously, such alterations were monitored by other methods utilizing microdissection procedures or stathmokinetic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号