首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Her4 (ErbB-4) and Her2/neu (ErbB-2) are receptor-tyrosine kinases belonging to the epidermal growth factor receptor (EGFR) family. Crystal structures of EGFR and Her4 kinase domains demonstrate kinase dimerization and activation through an allosteric mechanism. The kinase domains form an asymmetric dimer, where the C-lobe surface of one monomer contacts the N-lobe of the other monomer. EGFR kinase dimerization and activation in vitro was previously reported using a nickel-chelating lipid-liposome system, and we now apply this system to all other members of the EGFR family. Polyhistidine-tagged Her4, Her2/neu, and Her3 kinase domains are bound to these nickel-liposomes and are brought to high local concentration, mimicking what happens to full-length receptors in vivo following ligand binding. Addition of nickel-liposomes to Her4 kinase domain results in 40-fold activation in kinase activity and marked enhancement of C-terminal tail autophosphorylation. Activation of Her4 shows a sigmoidal dependence on kinase concentration, consistent with a cooperative process requiring kinase dimerization. Her2/neu kinase activity is also activated by nickel-liposomes, and is increased further by heterodimerization with Her3 or Her4. The ability of Her3 and Her4 to heterodimerize and activate other family members is studied in vitro. Her3 kinase domain readily activates Her2/neu but is a poor activator of Her4, which differs from the prediction made by the asymmetric dimer model. Mutation of Her3 residues 952ENI954 to the corresponding sequence in Her4 enhanced the ability of Her3 to activate Her4, demonstrating that sequence differences on the C-lobe surface influence the heterodimerization and activation of ErbB kinase domains.  相似文献   

2.
Zhang X  Gureasko J  Shen K  Cole PA  Kuriyan J 《Cell》2006,125(6):1137-1149
The mechanism by which the epidermal growth factor receptor (EGFR) is activated upon dimerization has eluded definition. We find that the EGFR kinase domain can be activated by increasing its local concentration or by mutating a leucine (L834R) in the activation loop, the phosphorylation of which is not required for activation. This suggests that the kinase domain is intrinsically autoinhibited, and an intermolecular interaction promotes its activation. Using further mutational analysis and crystallography we demonstrate that the autoinhibited conformation of the EGFR kinase domain resembles that of Src and cyclin-dependent kinases (CDKs). EGFR activation results from the formation of an asymmetric dimer in which the C-terminal lobe of one kinase domain plays a role analogous to that of cyclin in activated CDK/cyclin complexes. The CDK/cyclin-like complex formed by two kinase domains thus explains the activation of EGFR-family receptors by homo- or heterodimerization.  相似文献   

3.
Dimerization and phosphorylation of the epidermal growth factor (EGF) receptor (EGFR) are the initial and essential events of EGF-induced signal transduction. However, the mechanism by which EGFR ligands induce dimerization and phosphorylation is not fully understood. Here, we demonstrate that EGFRs can form dimers on the cell surface independent of ligand binding. However, a chimeric receptor, comprising the extracellular and transmembrane domains of EGFR and the cytoplasmic domain of the erythropoietin receptor (EpoR), did not form a dimer in the absence of ligands, suggesting that the cytoplasmic domain of EGFR is important for predimer formation. Analysis of deletion mutants of EGFR showed that the region between (835)Ala and (918)Asp of the EGFR cytoplasmic domain is required for EGFR predimer formation. In contrast to wild-type EGFR ligands, a mutant form of heparin-binding EGF-like growth factor (HB2) did not induce dimerization of the EGFR-EpoR chimeric receptor and therefore failed to activate the chimeric receptor. However, when the dimerization was induced by a monoclonal antibody to EGFR, HB2 could activate the chimeric receptor. These results indicate that EGFR can form a ligand-independent inactive dimer and that receptor dimerization and activation are mechanistically distinct and separable events.  相似文献   

4.
Dimerization among the EGFR family of tyrosine kinase receptors leads to allosteric activation of the kinase domains of the partners. Unlike other members in the family, the kinase domain of HER3 lacks key amino acid residues for catalytic activity. As a result, HER3 is suggested to serve as an allosteric activator of other EGFR family members which include EGFR, HER2 and HER4. To study the role of intracellular domains in HER3 dimerization and activation of downstream signaling pathways, we constructed HER3/HER2 chimeric receptors by replacing the HER3 kinase domain (HER3-2-3) or both the kinase domain and the C-terminal tail (HER3-2-2) with the HER2 counterparts and expressed the chimeric receptors in Chinese hamster ovary (CHO) cells. While over expression of the intact human HER3 transformed CHO cells with oncogenic properties such as AKT/ERK activation and increased proliferation and migration, CHO cells expressing the HER3-2-3 chimeric receptor showed significantly reduced HER3/HER2 dimerization and decreased phosphorylation of both AKT and ERK1/2 in the presence of neuregulin-1 (NRG-1). In contrast, CHO cells expressing the HER3-2-2 chimeric receptor resulted in a total loss of downstream AKT activation in response to NRG-1, but maintained partial activation of ERK1/2. The results demonstrate that the intracellular domains play a crucial role in HER3’s function as an allosteric activator and its role in downstream signaling.  相似文献   

5.
Although EGFR is a highly sought-after drug target, inhibitor resistance remains a challenge. As an alternative strategy for kinase inhibition, we sought to explore whether allosteric activation mechanisms could effectively be disrupted. The kinase domain of EGFR forms an atypical asymmetric dimer via head-to-tail interactions and serves as a requisite for kinase activation. The kinase dimer interface is primarily formed by the H-helix derived from one kinase monomer and the small lobe of the second monomer. We hypothesized that a peptide designed to resemble the binding surface of the H-helix may serve as an effective disruptor of EGFR dimerization and activation. A library of constrained peptides was designed to mimic the H-helix of the kinase domain and interface side chains were optimized using molecular modeling. Peptides were constrained using peptide “stapling” to structurally reinforce an alpha-helical conformation. Peptide stapling was demonstrated to notably enhance cell permeation of an H-helix derived peptide termed EHBI2. Using cell-based assays, EHBI2 was further shown to significantly reduce EGFR activity as measured by EGFR phosphorylation and phosphorylation of the downstream signaling substrate Akt. To our knowledge, this is the first H-helix-based compound targeting the asymmetric interface of the kinase domain that can successfully inhibit EGFR activation and signaling. This study presents a novel, alternative targeting site for allosteric inhibition of EGFR.  相似文献   

6.
The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family that plays a role in multiple cellular processes. Activation of EGFR requires binding of a ligand on the extracellular domain to promote conformational changes leading to dimerization and transphosphorylation of intracellular kinase domains. Seven ligands are known to bind EGFR with affinities ranging from sub-nanomolar to near micromolar dissociation constants. In the case of EGFR, distinct conformational states assumed upon binding a ligand is thought to be a determining factor in activation of a downstream signaling network. Previous biochemical studies suggest the existence of both low affinity and high affinity EGFR ligands. While these studies have identified functional effects of ligand binding, high-resolution structural data are lacking. To gain a better understanding of the molecular basis of EGFR binding affinities, we docked each EGFR ligand to the putative active state extracellular domain dimer and 25.0 ns molecular dynamics simulations were performed. MM-PBSA/GBSA are efficient computational approaches to approximate free energies of protein-protein interactions and decompose the free energy at the amino acid level. We applied these methods to the last 6.0 ns of each ligand-receptor simulation. MM-PBSA calculations were able to successfully rank all seven of the EGFR ligands based on the two affinity classes: EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR. Results from energy decomposition identified several interactions that are common among binding ligands. These findings reveal that while several residues are conserved among the EGFR ligand family, no single set of residues determines the affinity class. Instead we found heterogeneous sets of interactions that were driven primarily by electrostatic and Van der Waals forces. These results not only illustrate the complexity of EGFR dynamics but also pave the way for structure-based design of therapeutics targeting EGF ligands or the receptor itself.  相似文献   

7.
Phosphotyrosine binding (PTB) domains of the adaptor proteins Doks (downstream of tyrosine kinases) play an important role in regulating signal transduction of cell-surface receptors in cell growth, proliferation and differentiation; however, ligand specificity of the Dok PTB domains has until now remained elusive. In this study, we have investigated the molecular basis of specific association between the Dok1 PTB domain and the tyrosine-phosphorylated EGFR. Using yeast two-hybrid and biochemical binding assays, we show that only the PTB domain from Dok1 but not Dok4 or Dok5 can selectively bind to two known tyrosine phosphorylation sites at Y1086 and Y1148 in EGFR. Our structure-based mutational analyses define the molecular determinants for the two distinct Dok1 PTB domain/EGFR interactions and provide the structural understanding of the specific interactions between EGFR and PTB domains in the divergent Dok homologues.  相似文献   

8.
We study a mechanism by which dimerization of the EGF receptor (EGFR) cytoplasmic domain is transmitted to the ectodomain. Therapeutic and other small molecule antagonists to the kinase domain that stabilize its active conformation, but not those that stabilize an inactive conformation, stabilize ectodomain dimerization. Inhibitor-induced dimerization requires an asymmetric kinase domain interface associated with activation. EGF and kinase inhibitors stimulate formation of identical dimer interfaces in the EGFR transmembrane domain, as shown by disulfide cross-linking. Disulfide cross-linking at an interface in domain IV in the ectodomain was also stimulated similarly; however, EGF but not inhibitors stimulated cross-linking in domain II. Inhibitors similarly induced noncovalent dimerization in nearly full-length, detergent-solubilized EGFR as shown by gel filtration. EGFR ectodomain deletion resulted in spontaneous dimerization, whereas deletion of exons 2–7, in which extracellular domains III and IV are retained, did not. In EM, kinase inhibitor-induced dimers lacked any well defined orientation between the ectodomain monomers. Fab of the therapeutic antibody cetuximab to domain III confirmed a variable position and orientation of this domain in inhibitor-induced dimers but suggested that the C termini of domain IV of the two monomers were in close proximity, consistent with dimerization in the transmembrane domains. The results provide insights into the relative energetics of intracellular and extracellular dimerization in EGFR and have significance for physiologic dimerization through the asymmetric kinase interface, bidirectional signal transmission in EGFR, and mechanism of action of therapeutics.  相似文献   

9.
Mustafa M  Mirza A  Kannan N 《Proteins》2011,79(1):99-114
The catalytic domain of epidermal growth factor receptor (EGFR) is activated by dimerization, which requires allosteric coupling between distal dimerization and catalytic sites. Although crystal structures of EGFR kinases, solved in various conformational states, have provided important insights into EGFR activation by dimerization, the atomic details of how dimerization signals are dynamically coupled to catalytic regions of the kinase core are not fully understood. In this study, we have performed unrestrained and targeted molecular dynamics simulations on the active and inactive states of EGFR, followed by principal component analysis on the simulated trajectories, to identify correlated motions in the EGFR kinase domain upon dimerization. Our analysis reveals that the conformational changes associated with the catalytic functions of the kinase core are highly correlated with motions in the juxtamembrane (JM) and C-terminal tail, two flexible structural elements that play an active role in EGFR kinase activation and dimerization. In particular, the opening and closing of the ATP binding lobe relative to the substrate binding lobe is highly correlated with motions in the JM and C-terminal tail, suggesting that ATP and substrate binding can be coordinated with dimerization through conformational changes in the JM and C-terminal tail. Our study pinpoints key residues involved in this conformational coupling, and provides new insights into the role of the JM and C-terminal tail segments in EGFR kinase functions.  相似文献   

10.
The mechanisms by which signals are transmitted across the plasma membrane to regulate signaling are largely unknown for receptors with single-pass transmembrane domains such as the epidermal growth factor receptor (EGFR). A crystal structure of the extracellular domain of EGFR dimerized by epidermal growth factor (EGF) reveals the extended, rod-like domain IV and a small, hydrophobic domain IV interface compatible with flexibility. The crystal structure and disulfide cross-linking suggest that the 7-residue linker between the extracellular and transmembrane domains is flexible. Disulfide cross-linking of the transmembrane domain shows that EGF stimulates only moderate association in the first two α-helical turns, in contrast to association throughout the membrane over five α-helical turns in glycophorin A and integrin. Furthermore, systematic mutagenesis to leucine and phenylalanine suggests that no specific transmembrane interfaces are required for EGFR kinase activation. These results suggest that linkage between ligand-induced dimerization and tyrosine kinase activation is much looser than was previously envisioned.Fundamental to cellular physiology is the ability to transmit extracellular signals across the cell membrane to trigger intracellular responses. Although the extracellular and intracellular portions of cell surface receptors are responsible for detecting ligands and initiating signal cascades, respectively, transmembrane (TM) domains are thought to play critical roles by specifically associating and propagating signals across the phospholipid bilayer. However, the mechanisms by which single-pass TM domains associate and conduct signals are poorly understood.The epidermal growth factor receptor (EGFR) is the prototypical type I TM receptor tyrosine kinase. EGFR and related members of the ErbB family—ErbB2, ErbB3, and ErbB4—contain a glycosylated extracellular ligand binding domain; a single-pass TM domain; and intracellular juxtamembrane, tyrosine kinase, and autophosphorylation domains. The extracellular domain of EGFR binds polypeptide growth factor ligands, such as epidermal growth factor (EGF), to stimulate an array of intracellular signaling cascades that regulate normal and oncogenic cellular growth and proliferation (3, 17, 36). In one model of growth factor-dependent EGFR activation, ligand binding promotes receptor dimerization and activation of intracellular protein tyrosine kinase activity (35); other models suggest that receptors are predimerized on the cell surface and ligand binding alters the equilibrium between inactive and active dimeric (or higher-order oligomeric) configurations (9, 29).Structural mechanisms of growth factor-mediated receptor dimerization and allosteric kinase domain activation have been proposed from recent crystal structures of isolated extracellular ligand binding domains (7) and intracellular tyrosine kinase domains (37). The orientation between the four extracellular domains is dramatically altered upon ligand binding, which frees interfaces that are masked in tethered, unliganded monomers to mediate dimer formation (7). Furthermore, an unusual asymmetric interface between two kinase domain monomers is linked to rearrangement of the kinase site to the active conformation (37). However, neither the position of the last extracellular domain, domain IV, nor association between the TM domains is well-defined experimentally in liganded receptors. The approximate location of domain IV has been suggested by models based on the orientation between domains III and IV in unliganded monomers (7, 12) and two-dimensional negative-stain electron microscopy (EM) averages (27); however, the position of domain IV in the liganded dimer has not been determined in previous crystal structures (13, 30). Thus, it is not known how the extracellular domain positions the TM domains for transmembrane signaling.Several lines of evidence suggest that the TM domain contributes directly to receptor dimerization and signaling. The neu oncogene encodes a Val → Glu substitution in the TM domain of ErbB2 that results in constitutive activation (34). Recombinant EGFR fragments consisting of the extracellular and TM domains have a 105-fold higher affinity for dimerization than the isolated soluble extracellular domains (31). The TM domains of all four ErbB family members self-associate when expressed in bacterial inner membranes (26). A dimeric structure for isolated ErbB2 TM peptides in bicelles has been defined by nuclear magnetic resonance (NMR) imaging (4). However, ErbB2 does not bind ligand and does not physiologically homodimerize (17). Moreover, different ErbB family member TM domains utilize potentially distinct GxxxG sequence motifs to dimerize, as shown with fusion proteins in bacterial membranes (26). However, it is not clear how the TM domains contribute to dimerization and signaling in intact receptors on the cell surface.Here, we characterize the structural basis for EGFR transmembrane signaling. An improved crystal structure of the EGF-bound EGFR extracellular domain resolves domain IV in electron density maps and identifies a small domain IV dimerization interface, the mutation of which does not abolish signaling. The crystal structure and disulfide cross-linking demonstrate a flexible, dimeric linker between the extracellular and transmembrane domains. EGF-induced dimerization of the TM domains involves an interface far less extensive than that found in two receptors that dimerize in the absence of activation. Furthermore, mutagenesis shows that no unique interface is required for transmembrane signaling. Thus, we propose that signal transmission through the EGFR is communicated much more loosely than was previously thought.  相似文献   

11.
Insulin receptor (IR) and the epidermal growth factor receptor (EGFR) were the first receptor tyrosine kinases (RTKs) to be studied in detail. Both are important clinical targets—in diabetes and cancer, respectively. They have unique extracellular domain compositions among RTKs, but share a common module with two ligand‐binding leucine‐rich‐repeat (LRR)‐like domains connected by a flexible cysteine‐rich (CR) domain (L1‐CR‐L2 in IR/domain, I‐II‐III in EGFR). This module is linked to the transmembrane region by three fibronectin type III domains in IR, and by a second CR in EGFR. Despite sharing this conserved ligand‐binding module, IR and EGFR family members are considered mechanistically distinct—in part because IR is a disulfide‐linked (αβ)2 dimer regardless of ligand binding, whereas EGFR is a monomer that undergoes ligand‐induced dimerization. Recent cryo‐electron microscopy (cryo‐EM) structures suggest a way of unifying IR and EGFR activation mechanisms and origins of negative cooperativity. In EGFR, ligand engages both LRRs in the ligand‐binding module, “closing” this module to break intramolecular autoinhibitory interactions and expose new dimerization sites for receptor activation. How insulin binds the activated IR was less clear until now. Insulin was known to associate with one LRR (L1), but recent cryo‐EM structures suggest that it also engages the second LRR (albeit indirectly) to “close” the L1‐CR‐L2 module, paralleling EGFR. This transition simultaneously breaks autoinhibitory interactions and creates new receptor‐receptor contacts—remodeling the IR dimer (rather than inducing dimerization per se) to activate it. Here, we develop this view in detail, drawing mechanistic links between IR and EGFR.  相似文献   

12.
Wang Q  Villeneuve G  Wang Z 《EMBO reports》2005,6(10):942-948
Given that ligand binding is essential for the rapid internalization of epidermal growth factor receptor (EGFR), the events induced by ligand binding probably contribute to the regulation of EGFR internalization. These events include receptor dimerization, activation of intrinsic tyrosine kinase activity and autophosphorylation. Whereas the initial results are controversial regarding the role of EGFR kinase activity in EGFR internalization, more recent data suggest that EGFR kinase activation is essential for EGFR internalization. However, we have shown here that inhibition of EGFR kinase activation by mutation or by chemical inhibitors did not block EGF-induced EGFR internalization. Instead, proper EGFR dimerization is necessary and sufficient to stimulate EGFR internalization. We conclude that EGFR internalization is controlled by EGFR dimerization, rather than EGFR kinase activation. Our results also define a new role for EGFR dimerization: by itself it can drive EGFR internalization, independent of its role in the activation of EGFR kinase.  相似文献   

13.
Deregulation of epidermal growth factor receptor (EGFR) signaling has been correlated with the development of a variety of human carcinomas. EGF-induced receptor dimerization and consequent trans- auto-phosphorylation are among the earliest events in signal transduction. Binding of EGF is thought to induce a conformational change that consequently unfolds an ectodomain loop required for dimerization indirectly. It may also induce important allosteric changes in the cytoplasmic domain. Despite extensive knowledge on the physiological activation of EGFR, the effect of targeted therapies on receptor conformation is not known and this particular aspect of receptor function, which can potentially be influenced by drug treatment, may in part explain the heterogeneous clinical response among cancer patients. Here, we used Förster resonance energy transfer/fluorescence lifetime imaging microscopy (FRET/FLIM) combined with two-color single-molecule tracking to study the effect of ATP-competitive small molecule tyrosine kinase inhibitors (TKIs) and phosphatase-based manipulation of EGFR phosphorylation on live cells. The distribution of dimer on-times was fitted to a monoexponential to extract dimer off-rates (koff). Our data show that pretreatment with gefitinib (active conformation binder) stabilizes the EGFR ligand-bound homodimer. Overexpression of EGFR-specific DEP-1 phosphatase was also found to have a stabilizing effect on the homodimer. No significant difference in the koff of the dimer could be detected when an anti-EGFR antibody (425 Snap single-chain variable fragment) that allows for dimerization of ligand-bound receptors, but not phosphorylation, was used. These results suggest that both the conformation of the extracellular domain and phosphorylation status of the receptor are involved in modulating the stability of the dimer. The relative fractions of these two EGFR subpopulations (interacting versus free) were obtained by a fractional-intensity analysis of ensemble FRET/FLIM images. Our combined imaging approach showed that both the fraction and affinity (surrogate of conformation at a single-molecule level) increased after gefitinib pretreatment or DEP-1 phosphatase overexpression. Using an EGFR mutation (I706Q, V948R) that perturbs the ability of EGFR to dimerize intracellularly, we showed that a modest drug-induced increase in the fraction/stability of the EGFR homodimer may have a significant biological impact on the tumor cell’s proliferation potential.  相似文献   

14.
Ligand binding to receptor tyrosine kinases (RTKs) regulates receptor dimerization and activation of the kinase domain. To examine the role of the transmembrane domain in regulation of RTK activation, we have exploited a simplified transmembrane motif, [VVVEVVV](n), previously shown to activate the Neu receptor. Here we demonstrate rotational linkage of the transmembrane domain with the kinase domain, as evidenced by a periodic activation of Neu as the dimerization motif is shifted across the transmembrane domain. These results indicate that activation requires a specific orientation of the kinase domains with respect to each other. Results obtained with platelet-derived growth factor receptor-beta suggest that this rotational linkage of the transmembrane domain to the kinase domain may be a general feature of RTKs. These observations suggest that activating mutations in RTK transmembrane and juxtamembrane domains will be limited to those residues that position the kinase domains in an allowed rotational conformation.  相似文献   

15.
Mi LZ  Grey MJ  Nishida N  Walz T  Lu C  Springer TA 《Biochemistry》2008,47(39):10314-10323
Cellular signaling mediated by the epidermal growth factor receptor (EGFR or ErbB) family of receptor tyrosine kinases plays an important role in regulating normal and oncogenic cellular physiology. While structures of isolated EGFR extracellular domains and intracellular protein tyrosine kinase domains have suggested mechanisms for growth factor-mediated receptor dimerization and allosteric kinase domain activation, understanding how the transmembrane and juxtamembrane domains contribute to transmembrane signaling requires structural studies on intact receptor molecules. In this report, recombinant EGFR constructs containing the extracellular, transmembrane, juxtamembrane, and kinase domains are overexpressed and purified from human embryonic kidney 293 cell cultures. The oligomerization state, overall structure, and functional stability of the purified EGF-bound receptor are characterized in detergent micelles and phospholipid bilayers. In the presence of EGF, catalytically active EGFR dimers can be isolated by gel filtration in dodecyl maltoside. Visualization of the dimeric species by negative stain electron microscopy and single particle averaging reveals an overall structure of the extracellular domain that is similar to previously published crystal structures and is consistent with the C-termini of domain IV being juxtaposed against one another as they enter the transmembrane domain. Although detergent-soluble preparations of EGFR are stable as dimers in the presence of EGF, they exhibit differential functional stability in Triton X-100 versus dodecyl maltoside. Furthermore, the kinase activity can be significantly stabilized by reconstituting purified EGF-bound EGFR dimers in phospholipid nanodiscs or vesicles, suggesting that the environment around the hydrophobic transmembrane and amphipathic juxtamembrane domains is important for stabilizing the tyrosine kinase activity in vitro.  相似文献   

16.
Intracellular signaling is mediated by reversible posttranslational modifications (PTMs) that include phosphorylation, ubiquitination, and acetylation, among others. In response to extracellular stimuli such as growth factors, receptor tyrosine kinases (RTKs) typically dimerize and initiate signaling through phosphorylation of their cytoplasmic tails and downstream scaffolds. Signaling effectors are recruited to these phosphotyrosine (pTyr) sites primarily through Src homology 2 (SH2) domains and pTyr-binding (PTB) domains. This review describes how these conserved domains specifically recognize pTyr residues and play a major role in mediating precise downstream signaling events.Receptor tyrosine kinase (RTK) signaling is initiated on binding of soluble growth factors to growth factor receptors such as the insulin receptor (IR) or epidermal growth factor receptor (EGFR), or on binding of membrane-bound ephrins, as is the case for Eph receptors. Intracellular signaling is then propagated through PTMs, which commonly serve to regulate protein function by acting as docking sites for recruitment of modular protein interaction domains. Phosphorylation is the best studied PTM, and is a principle mechanism regulating intracellular signaling.A common element in RTK signaling involves autophosphorylation of the intracellular portion of the receptor (Fig. 1). RTKs become activated as a result of ligand-stabilized dimerization or oligomerization. For instance, in the EGFR subfamily (which includes ErbB and EGF receptors), the formation of homo- or heterodimers is initiated by ligand binding and subsequent exposure of a dimerization domain (Hynes and Lane 2005). Dimerization of the RTKs allows autophosphorylation of the RTKs; EGFR is exceptional in that an allosteric interaction between the kinase domains of adjacent monomers is responsible for the receptor activation (Zhang et al. 2006). However, in the majority of cases dimerization enhances RTK catalytic activity through phosphorylation of the kinase activation loop, and in some instances the juxtamembrane region, and recruits signaling effectors through the creation of pTyr docking sites. The specific interaction of signaling proteins with these pTyr-binding motifs activates signaling pathways, such as canonical signaling through the Ras-mitogen activated protein kinase (MAPK), phosphoinositide-3-kinase (PI3K)-Akt, and phospholipase C-gamma (PLC-γ) pathways. These RTK pathways can result in a variety of cellular processes, including differentiation, proliferation, survival, and migration (Fig. 1). The cellular context of signaling can dictate the biological outcome, and how each RTK initiates a given cellular process remains an area of active research.Open in a separate windowFigure 1.Receptor tyrosine kinases activate downstream pathways through recruitment of proteins containing pTyr-binding domains. Receptor tyrosine kinases are activated on growth factor binding to the extracellular domain of the receptor, leading to receptor dimerization and tyrosine phosphorylation (yellow circles labeled with a P) of their cytoplasmic tails, which act as docking sites for recruitment of PTB and SH2 domains. Various RTKs can mediate a diverse set of cellular processes (colored boxes) determined by the recruitment of specific SH2- and PTB-domain-containing proteins. The gray box displays how the adaptor Grb2 is recruited to an RTK through recognition of the pY-x-N (pY = pTyr, x = any natural amino acid) and activates cell growth and survival pathways such as MAPK and AKT, respectively, through complex formation via its SH3 domains.Tyrosine phosphorylation mediates RTK signaling through the recruitment and activation of proteins involved in downstream signaling pathways, mediated through pTyr binding of the SH2 and PTB domains of signaling effectors. SH2 and PTB domains are found in an otherwise diverse set of proteins containing a range of distinct catalytic and interaction domains, and provide a degree of specificity through their recognition of both a pTyr residue and surrounding amino acids. Here we will discuss the properties of proteins that contain SH2 and PTB domains and their roles in signaling downstream of RTKs, as well as the mechanisms by which they regulate the activity of these signaling effectors.  相似文献   

17.
The crystal structure of the kinase domain from the epidermal growth factor receptor (EGFRK) including forty amino acids from the carboxyl-terminal tail has been determined to 2.6-A resolution, both with and without an EGFRK-specific inhibitor currently in Phase III clinical trials as an anti-cancer agent, erlotinib (OSI-774, CP-358,774, Tarceva(TM)). The EGFR family members are distinguished from all other known receptor tyrosine kinases in possessing constitutive kinase activity without a phosphorylation event within their kinase domains. Despite its lack of phosphorylation, we find that the EGFRK activation loop adopts a conformation similar to that of the phosphorylated active form of the kinase domain from the insulin receptor. Surprisingly, key residues of a putative dimerization motif lying between the EGFRK domain and carboxyl-terminal substrate docking sites are found in close contact with the kinase domain. Significant intermolecular contacts involving the carboxyl-terminal tail are discussed with respect to receptor oligomerization.  相似文献   

18.
Shan Y  Eastwood MP  Zhang X  Kim ET  Arkhipov A  Dror RO  Jumper J  Kuriyan J  Shaw DE 《Cell》2012,149(4):860-870
The mutation and overexpression of the epidermal growth factor receptor (EGFR) are associated with the development of a variety of cancers, making this prototypical dimerization-activated receptor tyrosine kinase a prominent target of cancer drugs. Using long-timescale molecular dynamics simulations, we find that the N lobe dimerization interface of the wild-type EGFR kinase domain is intrinsically disordered and that it becomes ordered only upon dimerization. Our simulations suggest, moreover, that some cancer-linked mutations distal to the dimerization interface, particularly the widespread L834R mutation (also referred to as L858R), facilitate EGFR dimerization by suppressing this local disorder. Corroborating these findings, our biophysical experiments and kinase enzymatic assays indicate that the L834R mutation causes abnormally high activity primarily by promoting EGFR dimerization rather than by allowing activation without dimerization. We also find that phosphorylation of EGFR kinase domain at Tyr845 may suppress the intrinsic disorder, suggesting a molecular mechanism for autonomous EGFR signaling.  相似文献   

19.
Frey MR  Dise RS  Edelblum KL  Polk DB 《The EMBO journal》2006,25(24):5683-5692
Internalization and proteolytic degradation of epidermal growth factor (EGF) receptor (R) following ligand binding is an important mechanism for regulating EGF-stimulated signals. Using pharmacological and RNA interference inhibition of p38 mitogen-activated protein kinase, we show that p38 is required for efficient EGF-induced EGFR destruction but not internalization. In the absence of p38 activity, EGF fails to stimulate the ubiquitin ligase Cbl or ubiquitinylation of EGFR, and internalized EGFR accumulates in intracellular vesicles containing caveolin-1. These effects are accompanied by loss of EGFR phosphorylation on Y1045, a phosphorylation site required for Cbl activation. Furthermore, similar to cells treated with p38 inhibitors, intestinal epithelial cells expressing Y1045F EGFR mutants show increased proliferation but not migration in response to EGF, thus uncoupling these biological responses. Together these data position p38 as a modulator of ligand-stimulated EGFR processing and demonstrate that this processing has a profound impact on the cellular outcome of EGFR signaling.  相似文献   

20.
The adaptor protein APS is a substrate of the insulin receptor and couples receptor activation with phosphorylation of Cbl to facilitate glucose uptake. The interaction with the activated insulin receptor is mediated by the Src homology 2 (SH2) domain of APS. Here, we present the crystal structure of the APS SH2 domain in complex with the phosphorylated tyrosine kinase domain of the insulin receptor. The structure reveals a novel dimeric configuration of the APS SH2 domain, wherein the C-terminal half of each protomer is structurally divergent from conventional, monomeric SH2 domains. The APS SH2 dimer engages two kinase molecules, with pTyr-1158 of the kinase activation loop bound in the canonical phosphotyrosine binding pocket of the SH2 domain and a second phosphotyrosine, pTyr-1162, coordinated by two lysine residues in beta strand D. This structure provides a molecular visualization of one of the initial downstream recruitment events following insulin activation of its dimeric receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号