首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 368 毫秒
1.

Background

Identification of the causative genes of retinitis pigmentosa (RP) is important for the clinical care of patients with RP. However, a comprehensive genetic study has not been performed in Korean RP patients. Moreover, the genetic heterogeneity found in sensorineural genetic disorders makes identification of pathogenic mutations challenging. Therefore, high throughput genetic testing using massively parallel sequencing is needed.

Results

Sixty-two Korean patients with nonsyndromic RP (46 patients from 18 families and 16 simplex cases) who consented to molecular genetic testing were recruited in this study and targeted exome sequencing was applied on 53 RP-related genes. Causal variants were characterised by selecting exonic and splicing variants, selecting variants with low allele frequency (below 1 %), and discarding the remaining variants with quality below 20. The variants were additionally confirmed by an inheritance pattern and cosegregation test of the families, and the rest of the variants were prioritised using in-silico prediction tools. Finally, causal variants were detected from 10 of 18 familial cases (55.5 %) and 7 of 16 simplex cases (43.7 %) in total. Novel variants were detected in 13 of 20 (65 %) candidate variants. Compound heterozygous variants were found in four of 7 simplex cases.

Conclusion

Panel-based targeted re-sequencing can be used as an effective molecular diagnostic tool for RP.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1723-x) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background

Several studies point to a role of Toll-like receptors (TLRs) in the development of rheumatoid arthritis (RA). We investigated if genetic variants in TLR genes are associated with RA and response to tumour necrosis factor blocking (anti-TNF) medication.

Methodology and Principal Findings

22 single nucleotide polymorphisms (SNPs) in seven TLR genes were genotyped in a Dutch cohort consisting of 378 RA patients and 294 controls. Significantly associated variants were investigated in replication cohorts from The Netherlands, United Kingdom and Sweden (2877 RA patients and 2025 controls). 182 of the Dutch patients were treated with anti-TNF medication. Using these patients and a replication cohort (269 Swedish patients) we analysed if genetic variants in TLR genes were associated with anti-TNF outcome. In the discovery phase of the study we found a significant association of SNPs rs2072493 in TLR5 and rs3853839 in TLR7 with RA disease susceptibility. Meta-analysis of discovery and replication cohorts did not confirm these findings. SNP rs2072493 in TLR5 was associated with anti-TNF outcome in the Dutch but not in the Swedish population.

Conclusion

We conclude that genetic variants in TLRs do not play a major role in susceptibility for developing RA nor in anti-TNF treatment outcome in a Caucasian population.  相似文献   

3.

Introduction

Rheumatoid arthritis (RA) is a commonly occurring systemic inflammatory auto immune disease and is believed to be associated with genetic factors. The innate immune complement protein Mannose binding lectin (MBL) and their MBL2 genetic variants are associated with different infectious and autoimmune diseases.

Methods

In a Brazilian cohort, we aim to associate the functional role of circulating MBL serum levels and MBL2 variants in clinically classified patients (n = 196) with rheumatoid arthritis including their relatives (n = 200) and ethnicity matched healthy controls (n = 200). MBL serum levels were measured by ELISA and functional MBL2 variants were genotyped by direct sequencing.

Results

The exon1+54 MBL2*B variant was significantly associated with an increased risk and the reconstructed haplotype MBL2*LYPB was associated with RA susceptibility. Circulating serum MBL levels were observed significantly lower in RA patients compared to their relatives and controls. No significant contribution of MBL levels were observed with respect to functional class, age at disease onset, disease duration and/or other clinical parameters such as nodules, secondary Sjögren syndrome, anti-CCP and rheumatoid factor. Differential distribution of serum MBL levels with functional MBL2 variants was observed in respective RA patients and their relatives.

Conclusions

Our results suggest MBL levels as a possible marker for RA susceptibility in a Brazilian population.  相似文献   

4.

Background

Mutations in genes encoding cationic trypsinogen (PRSS1), pancreatic secretory trypsin inhibitor (SPINK1) and chymotrypsinogen C (CTRC) are associated with chronic pancreatitis. However, in many patients with a familial chronic pancreatitis pattern suggesting a genetic cause, no mutations in either of these genes can be found, indicating that other, still unknown, associated genes exist. In this respect ATP8B1 is an interesting candidate due to its strong expression in the pancreas, its supposed general function in membrane organization and the higher incidence of pancreatitis in patients with ATP8B1 deficiency.

Methods

We analyzed all 27 ATP8B1 coding exons and adjacent non-coding sequences of 507 chronic pancreatitis patients by direct sequencing. Exons that harbored possible relevant variations were subsequently sequenced in 1,027 healthy controls.

Results

In the exonic regions, 5 novel non-synonymous alterations were detected as well as 14 previously described alterations of which some were associated with ATP8B1 deficiency. However, allele frequencies for any of these variations did not significantly differ between patients and controls. Furthermore, several non-synonymous variants were exclusively detected in control subjects and multiple variants in the non-coding sequence were identified with similar frequencies in both groups.

Conclusions

We did not find an association between heterozygous ATP8B1 variants and chronic pancreatitis in our cohort of patients with hereditary and idiopathic chronic pancreatitis.  相似文献   

5.

Background

Human height is a complex trait with a strong genetic basis. Recently, a significant association between rare copy number variations (CNVs) and short stature has been identified, and candidate genes in these rare CNVs are being explored. This study aims to evaluate the association between mutations in ARID1B gene and short stature, both the syndromic and non-syndromic form.

Results

Based on a case-control study of whole genome chromosome microarray analysis (CMA), three overlapping CNVs were identified in patients with developmental disorders who exhibited short stature. ARID1B, a causal gene for Coffin Siris syndrome, is the only gene encompassed by all three CNVs. A following retrospective genotype-phenotype analysis based on a literature review confirmed that short stature is a frequent feature in those Coffin-Siris syndrome patients with ARID1B mutations. Mutation screening of ARID1B coding regions was further conducted in a cohort of 48 non-syndromic short stature patients,andfour novel missense variants including two de novo mutations were found.

Conclusion

These results suggest that haploinsufficient mutations of ARID1B are associated with syndromic short stature including Coffin-Siris syndrome and intellectual disability, while rare missense variants in ARID1B are associated with non-syndromic short stature. This study supports the notion that mutations in genes related to syndromic short stature may exert milder effect and contribute to short stature in the general population.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1898-1) contains supplementary material, which is available to authorized users.  相似文献   

6.
Wei X  Ju X  Yi X  Zhu Q  Qu N  Liu T  Chen Y  Jiang H  Yang G  Zhen R  Lan Z  Qi M  Wang J  Yang Y  Chu Y  Li X  Guang Y  Huang J 《PloS one》2011,6(12):e29500

Background

Identification of gene variants plays an important role in research on and diagnosis of genetic diseases. A combination of enrichment of targeted genes and next-generation sequencing (targeted DNA-HiSeq) results in both high efficiency and low cost for targeted sequencing of genes of interest.

Methodology/Principal Findings

To identify mutations associated with genetic diseases, we designed an array-based gene chip to capture all of the exons of 193 genes involved in 103 genetic diseases. To evaluate this technology, we selected 7 samples from seven patients with six different genetic diseases resulting from six disease-causing genes and 100 samples from normal human adults as controls. The data obtained showed that on average, 99.14% of 3,382 exons with more than 30-fold coverage were successfully detected using Targeted DNA-HiSeq technology, and we found six known variants in four disease-causing genes and two novel mutations in two other disease-causing genes (the STS gene for XLI and the FBN1 gene for MFS) as well as one exon deletion mutation in the DMD gene. These results were confirmed in their entirety using either the Sanger sequencing method or real-time PCR.

Conclusions/Significance

Targeted DNA-HiSeq combines next-generation sequencing with the capture of sequences from a relevant subset of high-interest genes. This method was tested by capturing sequences from a DNA library through hybridization to oligonucleotide probes specific for genetic disorder-related genes and was found to show high selectivity, improve the detection of mutations, enabling the discovery of novel variants, and provide additional indel data. Thus, targeted DNA-HiSeq can be used to analyze the gene variant profiles of monogenic diseases with high sensitivity, fidelity, throughput and speed.  相似文献   

7.

Background

Cattle populations are characterized by regular outburst of genetic defects as a result of the extensive use of elite sires. The causative genes and mutations can nowadays be rapidly identified by means of genome-wide association studies combined with next generation DNA sequencing, provided that the causative mutations are conventional loss-of-function variants. We show in this work how the combined use of next generation DNA and RNA sequencing allows for the rapid identification of otherwise difficult to identify splice-site variants.

Results

We report the use of haplotype-based association mapping to identify a locus on bovine chromosome 10 that underlies autosomal recessive arthrogryposis in Belgian Blue Cattle. We identify 31 candidate mutations by resequencing the genome of four cases and 15 controls at ~10-fold depth. By analyzing RNA-Seq data from a carrier fetus, we observe skipping of the second exon of the PIGH gene, which we confirm by RT-PCR to be fully penetrant in tissues from affected calves. We identify - amongst the 31 candidate variants - a C-to-G transversion in the first intron of the PIGH gene (c211-10C > G) that is predicted to affect its acceptor splice-site. The resulting PIGH protein is likely to be non-functional as it lacks essential domains, and hence to cause arthrogryposis.

Conclusions

This work illustrates how the growing arsenal of genome exploration tools continues to accelerate the identification of an even broader range of disease causing mutations, therefore improving the management and control of genetic defects in livestock.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1528-y) contains supplementary material, which is available to authorized users.  相似文献   

8.

Background

There is considerable interest in the hypothesis that low frequency, intermediate penetrance variants contribute to the proportion of Type 2 Diabetes (T2D) susceptibility not attributable to the common variants uncovered through genome-wide association approaches. Genes previously implicated in monogenic and multifactorial forms of diabetes are obvious candidates in this respect. In this study, we focussed on exons 8–10 of the HNF1A gene since rare, penetrant mutations in these exons (which are only transcribed in selected HNF1A isoforms) are associated with a later age of diagnosis of Maturity onset diabetes of the young (MODY) than mutations in exons 1–7. The age of diagnosis in the subgroup of HNF1A-MODY individuals with exon 8–10 mutations overlaps with that of early multifactorial T2D, and we set out to test the hypothesis that these exons might also harbour low-frequency coding variants of intermediate penetrance that contribute to risk of multifactorial T2D.

Methodology and Principal Findings

We performed targeted capillary resequencing of HNF1A exons 8–10 in 591 European T2D subjects enriched for genetic aetiology on the basis of an early age of diagnosis (≤45 years) and/or family history of T2D (≥1 affected sibling). PCR products were sequenced and compared to the published HNF1A sequence. We identified several variants (rs735396 [IVS9−24T>C], rs1169304 [IVS8+29T>C], c.1768+44C>T [IVS9+44C>T] and rs61953349 [c.1545G>A, p.T515T] but no novel non-synonymous coding variants were detected.

Conclusions and Significance

We conclude that low frequency, nonsynonymous coding variants in the terminal exons of HNF1A are unlikely to contribute to T2D-susceptibility in European samples. Nevertheless, the rationale for seeking low-frequency causal variants in genes known to contain rare, penetrant mutations remains strong and should motivate efforts to screen other genes in a similar fashion.  相似文献   

9.

Background

Genome wide association study (GWAS) has been proven to be a powerful tool for detecting genomic variants associated with complex traits. However, the specific genes and causal variants underlying these traits remain unclear.

Results

Here, we used target-enrichment strategy coupled with next generation sequencing technique to study target regions which were found to be associated with milk production traits in dairy cattle in our previous GWAS. Among the large amount of novel variants detected by targeted resequencing, we selected 200 SNPs for further association study in a population consisting of 2634 cows. Sixty six SNPs distributed in 53 genes were identified to be associated significantly with on milk production traits. Of the 53 genes, 26 were consistent with our previous GWAS results. We further chose 20 significant genes to analyze their mRNA expression in different tissues of lactating cows, of which 15 were specificly highly expressed in mammary gland.

Conclusions

Our study illustrates the potential for identifying causal mutations for milk production traits using target-enrichment resequencing and extends the results of GWAS by discovering new and potentially functional mutations.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1105) contains supplementary material, which is available to authorized users.  相似文献   

10.

Background

The strong male predominance in oesophageal adenocarcinoma (OAC) and Barrett’s oesophagus (BO) continues to puzzle. Hormonal influence, e.g. oestrogen or oxytocin, might contribute.

Methods

This genetic-epidemiological study pooled 14 studies from three continents, Australia, Europe, and North America. Polymorphisms in 3 key genes coding for the oestrogen pathway (receptor alpha (ESR1), receptor beta (ESR2), and aromatase (CYP19A1)), and 3 key genes of the oxytocin pathway (the oxytocin receptor (OXTR), oxytocin protein (OXT), and cyclic ADP ribose hydrolase glycoprotein (CD38)), were analysed using a gene-based approach, versatile gene-based test association study (VEGAS).

Results

Among 1508 OAC patients, 2383 BO patients, and 2170 controls, genetic variants within ESR1 were associated with BO in males (p = 0.0058) and an increased risk of OAC and BO combined in males (p = 0.0023). Genetic variants within OXTR were associated with an increased risk of BO in both sexes combined (p = 0.0035) and in males (p = 0.0012). We followed up these suggestive findings in a further smaller data set, but found no replication. There were no significant associations between the other 4 genes studied and risk of OAC, BO, separately on in combination, in males and females combined or in males only.

Conclusion

Genetic variants in the oestrogen receptor alpha and the oxytocin receptor may be associated with an increased risk of BO or OAC, but replication in other large samples are needed.  相似文献   

11.

Background

Rapid advances in next-generation sequencing technologies facilitate genetic association studies of an increasingly wide array of rare variants. To capture the rare or less common variants, a large number of individuals will be needed. However, the cost of a large scale study using whole genome or exome sequencing is still high. DNA pooling can serve as a cost-effective approach, but with a potential limitation that the identity of individual genomes would be lost and therefore individual characteristics and environmental factors could not be adjusted in association analysis, which may result in power loss and a biased estimate of genetic effect.

Methods

For case-control studies, we propose a design strategy for pool creation and an analysis strategy that allows covariate adjustment, using multiple imputation technique.

Results

Simulations show that our approach can obtain reasonable estimate for genotypic effect with only slight loss of power compared to the much more expensive approach of sequencing individual genomes.

Conclusion

Our design and analysis strategies enable more powerful and cost-effective sequencing studies of complex diseases, while allowing incorporation of covariate adjustment.  相似文献   

12.

Background

Two recent reports have identified the Endothelial Protein C Receptor (EPCR) as a key molecule implicated in severe malaria pathology. First, it was shown that EPCR in the human microvasculature mediates sequestration of Plasmodium falciparum-infected erythrocytes. Second, microvascular thrombosis, one of the major processes causing cerebral malaria, was linked to a reduction in EPCR expression in cerebral endothelial layers. It was speculated that genetic variation affecting EPCR functionality could influence susceptibility to severe malaria phenotypes, rendering PROCR, the gene encoding EPCR, a promising candidate for an association study.

Methods

Here, we performed an association study including high-resolution variant discovery of rare and frequent genetic variants in the PROCR gene. The study group, which previously has proven to be a valuable tool for studying the genetics of malaria, comprised 1,905 severe malaria cases aged 1–156 months and 1,866 apparently healthy children aged 2–161 months from the Ashanti Region in Ghana, West Africa, where malaria is highly endemic. Association of genetic variation with severe malaria phenotypes was examined on the basis of single variants, reconstructed haplotypes, and rare variant analyses.

Results

A total of 41 genetic variants were detected in regulatory and coding regions of PROCR, 17 of which were previously unknown genetic variants. In association tests, none of the single variants, haplotypes or rare variants showed evidence for an association with severe malaria, cerebral malaria, or severe malaria anemia.

Conclusion

Here we present the first analysis of genetic variation in the PROCR gene in the context of severe malaria in African subjects and show that genetic variation in the PROCR gene in our study population does not influence susceptibility to major severe malaria phenotypes.  相似文献   

13.

Background

Prior genomewide scans of schizophrenia support evidence of linkage to regions of chromosome 20. However, association analyses have yet to provide support for any etiologically relevant variants.

Methods

We analyzed 2988 LD-tagging single nucleotide polymorphisms (SNPs) in 327 genes on chromosome 20, to test for association with schizophrenia in 270 Irish high-density families (ISHDSF, N = 270 families, 1408 subjects). These SNPs were genotyped using an Illumina iSelect genotyping array which employs the Infinium assay. Given a previous report of novel linkage with chromosome 20p using latent classes of psychotic illness in this sample, association analysis was also conducted for each of five factor-derived scores based on the Operational Criteria Checklist for Psychotic Illness (delusions, hallucinations, mania, depression, and negative symptoms). Tests of association were conducted using the PDTPHASE and QPDTPHASE packages of UNPHASED. Empirical estimates of gene-wise significance were obtained by adaptive permutation of a) the smallest observed P-value and b) the threshold-truncated product of P-values for each locus.

Results

While no single variant was significant after LD-corrected Bonferroni-correction, our gene-dropping analyses identified loci which exceeded empirical significance criteria for both gene-based tests. Namely, R3HDML and C20orf39 are significantly associated with depressive symptoms of schizophrenia (P emp<2×10−5) based on the minimum P-value and truncated-product methods, respectively.

Conclusions

Using a gene-based approach to family-based association, R3HDML and C20orf39 were found to be significantly associated with clinical dimensions of schizophrenia. These findings demonstrate the efficacy of gene-based analysis and support previous evidence that chromosome 20 may harbor schizophrenia susceptibility or modifier loci.  相似文献   

14.
15.

Background

Autism is a complex childhood neurodevelopmental disorder with a strong genetic basis. Microdeletion or duplication of a ∼500–700-kb genomic rearrangement on 16p11.2 that contains 24 genes represents the second most frequent chromosomal disorder associated with autism. The role of common and rare 16p11.2 sequence variants in autism etiology is unknown.

Methodology/Principal Findings

To identify common 16p11.2 variants with a potential role in autism, we performed association studies using existing data generated from three microarray platforms: Affymetrix 5.0 (777 families), Illumina 550 K (943 families), and Affymetrix 500 K (60 families). No common variants were identified that were significantly associated with autism. To look for rare variants, we performed resequencing of coding and promoter regions for eight candidate genes selected based on their known expression patterns and functions. In total, we identified 26 novel variants in autism: 13 exonic (nine non-synonymous, three synonymous, and one untranslated region) and 13 promoter variants. We found a significant association between autism and a coding variant in the seizure-related gene SEZ6L2 (12/1106 autism vs. 3/1161 controls; p = 0.018). Sez6l2 expression in mouse embryos was restricted to the spinal cord and brain. SEZ6L2 expression in human fetal brain was highest in post-mitotic cortical layers, hippocampus, amygdala, and thalamus. Association analysis of SEZ6L2 in an independent sample set failed to replicate our initial findings.

Conclusions/Significance

We have identified sequence variation in at least one candidate gene in 16p11.2 that may represent a novel genetic risk factor for autism. However, further studies are required to substantiate these preliminary findings.  相似文献   

16.

Objectives

Genome-wide association studies have facilitated the identification of over 30 susceptibility loci for rheumatoid arthritis (RA). However, evidence for a number of potential susceptibility genes have not so far reached genome-wide significance in studies of Caucasian RA.

Methods

A cohort of 4286 RA patients from across Europe and 5642 population matched controls were genotyped for 25 SNPs, then combined in a meta-analysis with previously published data.

Results

Significant evidence of association was detected for nine SNPs within the European samples. When meta-analysed with previously published data, 21 SNPs were associated with RA susceptibility. Although SNPs in the PTPN2 gene were previously reported to be associated with RA in both Japanese and European populations, we show genome-wide evidence for a different SNP within this gene associated with RA susceptibility in an independent European population (rs7234029, P = 4.4×10−9).

Conclusions

This study provides further genome-wide evidence for the association of the PTPN2 locus (encoding the T cell protein tyrosine phosphastase) with Caucasian RA susceptibility. This finding adds to the growing evidence for PTPN2 being a pan-autoimmune susceptibility gene.  相似文献   

17.
Liu Y  Niu W  Wu Z  Su X  Chen Q  Lu L  Jin W 《PloS one》2012,7(2):e31406

Background

Coronary artery disease (CAD) is the most common heart disease worldwide. Association of CAD with variants in the myocyte enhancer factor 2A (MEF2A) gene, the first identified CAD-causing gene, has attracted special attention but the results are controversial. We aimed to evaluate this genetic association via a case-control study and meta-analysis.

Methodology/Principal Findings

We performed a case-control association study to investigate the relationship between variations in exon 11 of MEF2A gene and CAD in 1045 sporadic patients and 1008 controls enrolled angiographically among southern Chinese population, and then the data from this study were compared and discussed in a systematic review and meta-analysis with all available published studies on MEF2A gene and CAD. In total, eight variants were identified (21-bp deletion, CAG repeats, CCG repeats, a CCA deletion and four SNPs). No significant link was observed between the common (CAG)n polymorphism and CAD, whereas the rare 21-bp deletion was detected only in five affected individuals. The meta-analysis of (CAG)n polymorphism and CAD risk, including nine studies with 3801 CAD patients and 4020 controls, also provided no convincing evidence for the genetic association, even upon stratification by race (mainly Whites and Chinese). However, the 21-bp deletion was regarded as a potentially logical, albeit undetermined, candidate for CAD in the following systematic review.

Conclusions/Significance

Our findings failed to demonstrate a correlation between (CAG)n polymorphism with CAD, however, we concluded that the rare 21-bp deletion might have a more compelling effect on CAD than the common (CAG)n polymorphism, and MEF2A genetic variant might be a rare but specific cause of CAD/MI.  相似文献   

18.

Background

Brain arteriovenous malformations (BAVM) are clusters of abnormal blood vessels, with shunting of blood from the arterial to venous circulation and a high risk of rupture and intracranial hemorrhage. Most BAVMs are sporadic, but also occur in patients with Hereditary Hemorrhagic Telangiectasia, a Mendelian disorder caused by mutations in genes in the transforming growth factor beta (TGFβ) signaling pathway.

Methods

To investigate whether copy number variations (CNVs) contribute to risk of sporadic BAVM, we performed a genome-wide association study in 371 sporadic BAVM cases and 563 healthy controls, all Caucasian. Cases and controls were genotyped using the Affymetrix 6.0 array. CNVs were called using the PennCNV and Birdsuite algorithms and analyzed via segment-based and gene-based approaches. Common and rare CNVs were evaluated for association with BAVM.

Results

A CNV region on 1p36.13, containing the neuroblastoma breakpoint family, member 1 gene (NBPF1), was significantly enriched with duplications in BAVM cases compared to controls (P = 2.2×10−9); NBPF1 was also significantly associated with BAVM in gene-based analysis using both PennCNV and Birdsuite. We experimentally validated the 1p36.13 duplication; however, the association did not replicate in an independent cohort of 184 sporadic BAVM cases and 182 controls (OR = 0.81, P = 0.8). Rare CNV analysis did not identify genes significantly associated with BAVM.

Conclusion

We did not identify common CNVs associated with sporadic BAVM that replicated in an independent cohort. Replication in larger cohorts is required to elucidate the possible role of common or rare CNVs in BAVM pathogenesis.  相似文献   

19.

Background

The classical candidate-gene approach has failed to identify novel breast cancer susceptibility genes. Nowadays, massive parallel sequencing technology allows the development of studies unaffordable a few years ago. However, analysis protocols are not yet sufficiently developed to extract all information from the huge amount of data obtained.

Methodology/Principal Findings

In this study, we performed high throughput sequencing in two regions located on chromosomes 3 and 6, recently identified by linkage studies by our group as candidate regions for harbouring breast cancer susceptibility genes. In order to enrich for the coding regions of all described genes located in both candidate regions, a hybrid-selection method on tiling microarrays was performed.

Conclusions/Significance

We developed an analysis pipeline based on SOAP aligner to identify candidate variants with a high real positive confirmation rate (0.89), with which we identified eight variants considered candidates for functional studies. The results suggest that the present strategy might be a valid second step for identifying high penetrance genes.  相似文献   

20.

Background

Oligozoospermia is one of the severe forms of idiopathic male infertility. However, its pathology is largely unknown, and few genetic factors have been defined. Our previous genome-wide association study (GWAS) has identified four risk loci for non-obstructive azoospermia (NOA).

Objective

To investigate the potentially functional genetic variants (including not only common variants, but also less-common and rare variants) of these loci on spermatogenic impairment, especially oligozoospermia.

Design, Setting, and Participants

A total of 784 individuals with oligozoospermia and 592 healthy controls were recruited to this study from March 2004 and January 2011.

Measurements

We conducted a two-stage study to explore the association between oligozoospermia and new makers near NOA risk loci. In the first stage, we used next generation sequencing (NGS) in 96 oligozoospermia cases and 96 healthy controls to screen oligozoospermia-susceptible genetic variants. Next, we validated these variants in a large cohort containing 688 cases and 496 controls by SNPscan for high-throughput Single Nucleotide Polymorphism (SNP) genotyping.

Results and Limitations

Totally, we observed seven oligozoospermia associated variants (rs3791185 and rs2232015 in PRMT6, rs146039840 and rs11046992 in Sox5, rs1129332 in PEX10, rs3197744 in SIRPA, rs1048055 in SIRPG) in the first stage. In the validation stage, rs3197744 in SIRPA and rs11046992 in Sox5 were associated with increased risk of oligozoospermia with an odds ratio (OR) of 4.62 (P  =  0.005, 95%CI 1.58-13.4) and 1.82 (P  =  0.005, 95%CI 1.01-1.64), respectively. Further investigation in larger populations and functional characterizations are needed to validate our findings.

Conclusions

Our study provides evidence of independent oligozoospermia risk alleles driven by variants in the potentially functional regions of genes discovered by GWAS. Our findings suggest that integrating sequence data with large-scale genotyping will serve as an effective strategy for discovering risk alleles in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号