首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.

Background

The CD44 transmembrane glycoproteins play multifaceted roles in tumor progression and metastasis. CD44 expression has also been associated with stem-like breast cancer cells. Hypoxia commonly occurs in tumors and is a major cause of radiation and chemo-resistance. Hypoxia is known to inhibit differentiation and facilitates invasion and metastasis. Here we have investigated the effect of hypoxia on CD44 and two of its isoforms in MDA-MB-231 and SUM-149 triple negative human breast cancer cells and MDA-MB-231 tumors using imaging and molecular characterization.

Methods and Findings

The roles of hypoxia and hypoxia inducible factor (HIF) in regulating the expression of CD44 and its variant isoforms (CD44v6, CD44v7/8) were investigated in human breast cancer cells, by quantitative real-time polymerase chain reaction (qRT-PCR) to determine mRNA levels, and fluorescence associated cell sorting (FACS) to determine cell surface expression of CD44, under normoxic and hypoxic conditions. In vivo imaging studies with tumor xenografts derived from MDA-MD-231 cells engineered to express tdTomato red fluorescence protein under regulation of hypoxia response elements identified co-localization between hypoxic fluorescent regions and increased concentration of 125I-radiolabeled CD44 antibody.

Conclusions

Our data identified HIF-1α as a regulator of CD44 that increased the number of CD44 molecules and the percentage of CD44 positive cells expressing variant exons v6 and v7/8 in breast cancer cells under hypoxic conditions. Data from these cell studies were further supported by in vivo observations that hypoxic tumor regions contained cells with a higher concentration of CD44 expression.  相似文献   

4.
Hyaluronidase can modulate expression of CD44   总被引:5,自引:0,他引:5  
CD44 is a family of transmembrane glycoproteins with multiple isoforms generated by alternative exon splicing of a single gene. CD44 and its variants are expressed on a wide variety of cells including cancer cells. The mechanisms by which splice variant exons are selected are unknown. The presence of hyaluronan in the environment of the cell appears to influence that selection process. The expression of particular splice variants of CD44 as well as the simultaneous presence of hyaluronan is important for motility, invasion, and the metastatic spread of some tumors. The influence of hyaluronidase digestion on the expression of CD44 in human cancer cell lines was examined. CD44 isoforms containing alternatively spliced exons were sensitive to hyaluronidase digestion in all lines examined, but differences between cell lines were observed. Expression of CD44s, the standard form, was resistant to digestion in two of three cell lines. A tentative model was formulated proposing that CD44 isoforms containing splice variants are unstable, requiring the continuous presence of ligand for expression. CD44s is relatively more stable, not requiring the continuous presence of hyaluronan. Additionally, a number of new CD44 variant isoforms, not previously observed, were identified.  相似文献   

5.
6.
Zen K  Liu DQ  Guo YL  Wang C  Shan J  Fang M  Zhang CY  Liu Y 《PloS one》2008,3(3):e1826

Background

Endothelial E-selectin has been shown to play a pivotal role in mediating cell–cell interactions between breast cancer cells and endothelial monolayers during tumor cell metastasis. However, the counterreceptor for E-selectin and its role in mediating breast cancer cell transendothelial migration remain unknown.

Methodology/Principal Findings

By assessing migration of various breast cancer cells across TNF-α pre-activated human umbilical vein endothelial cells (HUVECs), we found that breast cancer cells migrated across HUVEC monolayers differentially and that transmigration was E-selectin dependent. Cell surface labeling with the E-selectin extracellular domain/Fc chimera (exE-selectin/Fc) showed that the transmigration capacity of breast cancer cells was correlated to both the expression level and localization pattern of E-selectin binding protein(s) on the tumor cell surface. The exE-selectin/Fc strongly bound to metastatic MDA-MB-231, MDA-MB-435 and MDA-MB-468 cells, but not non-metastatic MCF-7 and T47D cells. Binding of exE-selectin/Fc was abolished by removal of tumor cell surface sialyl lewis x (sLex) moieties. Employing an exE-selectin/Fc affinity column, we further purified the counterreceptor of E-selectin from metastatic breast cancer cells. The N-terminal protein sequence and cDNA sequence identified this E-selectin ligand as a ∼170 kD human CD44 variant 4 (CD44v4). Purified CD44v4 showed a high affinity for E-selectin via sLex moieties and, as expected, MDA-MB-231 cell adhesion to and migration across HUVEC monolayers were significantly reduced by down-regulation of tumor cell CD44v4 via CD44v4-specific siRNA.

Conclusions/Significance

We demonstrated, for the first time, that breast cancer cell CD44v4 is a major E-selectin ligand in facilitating tumor cell migration across endothelial monolayers. This finding offers new insights into the molecular basis of E-selectin–dependent adhesive interactions that mediate breast cancer cell transendothelial metastasis.  相似文献   

7.
Recently, splice variants of CD44 have been described that confer metastatic potential to non-metastasizing rat pancreatic carcinoma and sarcoma cell lines. Using antibodies against variant CD44 (CD44v) sequences, we have examined the expression of variant CD44 glycoproteins on human lymphoid cells and tissues and in colorectal neoplasia. Lymphohematopoietic cells express low levels of CD44v glycoproteins. During the process of lymphocyte activation in vitro and in vivo, expression of CD44v glycoproteins is transiently upregulated. The reaction pattern of various antibodies indicates that these CD44 variants contain the domain encoded by exon v6, which is part of the variant that confers metastatic capability. In human colorectal neoplasia we observed overexpression of CD44 splice variants in all invasive carcinomas. Already at early stages of colorectal tumor progression exon v5 epitopes were overexpressed. Tumor progression was strongly related to expression of CD44 isoforms containing exon v6 encoded domains. The findings establish CD44 variants as tumor progression markers in colorectal cancer.  相似文献   

8.
Recently, splice variants of CD44 have been described that confer metastatic potential to non-metastasizing rat pancreatic carcinoma and sarcoma cell lines. Using antibodies against variant CD44 (CD44v) sequences, we have examined the expression of variant CD44 glycoproteins on human lymphoid cells and tissues and in colorectal neoplasia. Lymphohematopoietic cells express low levels of CD44v glycoproteins. During the process of lymphocyte activation in vitro and in vivo, expression of CD44v glycoproteins is transiently upregulated. The reaction pattern of various antibodies indicates that these CD44 variants contain the domain encoded by exon v6, which is part of the variant that confers metastatic capability. In human colorectal neoplasia we observed overexpression of CD44 splice variants in all invasive carcinomas. Already at early stages of colorectal tumor progression exon v5 epitopes were overexpressed. Tumor progression was strongly related to expression of CD44 isoforms containing exon v6 encoded domains. The findings establish CD44 variants as tumor progression markers in colorectal cancer.  相似文献   

9.
CD44 is the major hyaluronan cell surface receptor and functions as an adhesion molecule in many different cell types, including human breast epithelial cells. The coexpression of certain CD44 variants (CD44v), such as CD44v (v10/ex14), with CD44s (standard form) appears to be closely associated with human breast tumor metastasis. In this study we have established a stable transfection of CD44v (v10/ex14) cDNA into nontumorigenic human breast epithelial cells (HBL100) which contain endogenous CD44s. Our results indicate that coexpression of both CD44v (v10/ex14) and CD44s alters the following important biological properties of these cells: 1) there is a significant reduction in hyaluronic acid (HA)-mediated cell adhesion; 2) there is an increased migration capability in collagen-matrix gel; and 3) these cells constitutively produce certain angiogenic factors and effectively promote tumorigenesis in athymic nude mice. These findings suggest that coexpression of CD44v (v10/ex14) and CD44s may trigger the onset of cell transformation required for breast cancer development. J. Cell. Physiol. 171:152–160, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Expression and modulation of CD44 variant isoforms in humans   总被引:15,自引:0,他引:15  
CD44 is a ubiquitous surface molecule that exists as a number of isoforms, generated by alternative splicing of 10 "variant" exons. Little is known about the expression and function of the variant isoforms, except that certain isoforms may play a role in cancer metastasis. We produced mAbs against CD44 variant regions encoded by exons 4v, 6v, and 9v, by immunizing mice with a fusion protein spanning variant exons 3v to 10v. A comprehensive analysis of human tissues revealed that CD44 variant isoforms were expressed widely throughout the body, principally by epithelial cells. However there was differential expression of CD44 variant exons by different epithelia. Most epithelia expressed exon 9v, but much fewer expressed 6v or 4v. The regions of epithelia that expressed the highest levels of the variant isoforms were the generative cells, particularly the basal cells of stratified squamous epithelium, and of glandular epithelium. CD44 variant isoforms were also expressed differentially by leukocytes, with CD44-9v expressed at very low levels and CD44-6v and 4v virtually absent. However, CD44-9v and CD44-6v were the main variants that were transiently upregulated on T cells after mitogenic stimulation and on myelomonocytic cell lines by TNF alpha and IFN gamma treatment. Some epithelial cell lines could preferentially upregulate CD44-6v upon IFN gamma incubation. These results show that CD44 variant isoforms are expressed much more widely than first appreciated, and that expression of the variant isoforms on some cell types can be modulated by particular cytokines.  相似文献   

11.
The human CD44 cell-surface glycoprotein participates in a wide variety of cell-cell interactions including lymphocyte homing and tumor metastasis. The CD44 antigen is known to display extensive size heterogeneity when compared between different tissue sources although the structural basis for this variation is not yet clear. Recently, two further isotypes in addition to the basic hemopoietic form of the CD44 antigen have been cloned and sequenced and these have been found to contain all or part of a 200-400-base pair insert within the extracellular domain, suggesting that the characteristic heterogeneity in the molecule may be generated by a mechanism of alternative splicing. We have obtained further evidence for alternative splicing, and we report here the cloning and sequencing of six different CD44 sequence variants from a variety of cell lines using a combination of expression cloning and the polymerase chain reaction. Comparison of these variants indicates that each is probably assembled by the insertion of five different exon units in tandem into a discrete site within the membrane proximal region of the extracellular domain. One of the variants contains an exon that shares extensive amino acid sequence homology with a recently described rat CD44 variant that mediates tumor metastasis. Another variant contains a new exon that encodes a tandem repeat of the consensus sequence SG for covalent modification with chondroitin sulfate and is expressed predominantly on mammary tumors. We suggest that a mechanism of alternative exon splicing generates much of the observed structural heterogeneity of CD44 and that the particular set of CD44 variants expressed in a single cell may represent a precise postal code directing the final destination of migrating cells and metastatic tumors.  相似文献   

12.
J Ding  W Jin  C Chen  Z Shao  J Wu 《PloS one》2012,7(7):e41942
Breast cancer is one of the most frequently diagnosed cancers among women, and metastasis makes it lethal. Tumor-associated macrophages (TAMs) that acquire an alternatively activated macrophage (M2) phenotype may promote metastasis. However, the underlying mechanisms are still elusive. Here, we examined how TAMs interact with breast cancer cells to promote metastasis. Immunohistochemistry was used to examine the expression of the M2-specific antigen CD163 in paraffin-embedded mammary carcinoma blocks to explore fusion events in breast cancer patients. U937 cells were used as a substitute for human monocytes, and these cells differentiated into M2 macrophages following phorbol 12-myristate 13-acetate (PMA) and M-CSF stimulation. M2 macrophages and the breast cancer cell lines MCF-7 and MDA-MB-231 fused in the presence of 50% polyethylene glycol. Hybrids were isolated by fluorescence-activated cell sorting, and the relevant cell biological properties were compared with their parental counterparts. Breast cancer stem cell (BCSC)-related markers were quantified by immunofluorescence staining, RT-PCR, quantitative RT-PCR and/or western blotting. The tumor-initiating and metastatic capacities of the hybrids and their parental counterparts were assessed in NOD/SCID mice. We found that the CD163 expression rate in breast cancer tissues varied significantly and correlated with estrogen receptor status (p<0.05). The fusion efficiency of either breast cancer cell line with M2 macrophages ranged from 1.81 to 6.47% in the presence of PEG, and no significant difference was observed between the breast cancer cell lines used (p>0.05). Characterization of the fusion hybrids revealed a more aggressive phenotype, including increased migration, invasion and tumorigenicity, but reduced proliferative ability, compared with the parental lines. The hybrids also gained a CD44(+)CD24(-/low) phenotype and over-expressed epithelial-mesenchymal transition-associated genes. These results indicate that TAMs may promote breast cancer metastasis through cell fusion, and the hybrids may gain a BCSC phenotype.  相似文献   

13.
AIMS: Family history of breast carcinoma, multicentric tumor foci in one breast, and in situ lobular carcinoma increase the risk of bilateral breast cancer (BBC), synchronous or metachronous. Synchronous tumors are designated as simultaneous breast carcinoma if they appear at the same time. The CD44 family and cadherin/catenin immunophenotype of this group of BBCs has not yet been evaluated. The aim of this study was to compare clinicopathological characteristics and immunohistochemical profiles of simultaneous BBC and corresponding lymph node metastases in eight patients. METHODS AND RESULTS: In toto 15 primary and 9 metastatic tumors were evaluated. The expression of CD44 variant isoforms, beta-catenin, E, P and N-cadherin were evaluated by immunohistochemistry. Rare types of breast carcinoma were frequent in this group of patients. There were 6 pleomorphic lobular, 5 invasive ductal of usual type, 3 atypical medullary carcinomas, 2 mucinous and one invasive micropapillary carcinoma. The expression CD44v6 was most frequent, followed by CD44v3-10, CD44v5, and CD44v3. CD44v4 was generally not expressed. E-cadherin was expressed in 80% primary tumors, 40% expressed N-cadherin, and 66% expressed P-cadherin. CONCLUSIONS: Generally, simultaneous carcinomas had different morphology and different immunophenotype. Each primary tumor was more similar to its corresponding metastatic tumor than to the contralateral primary tumor.  相似文献   

14.
CD44v6: a target for antibody-based cancer therapy   总被引:15,自引:0,他引:15  
The human CD44 gene encodes type 1 transmembrane glycoproteins involved in cell-cell and cell-matrix interactions. The structural heterogeneity of the gene products is caused primarily by alternative splicing of at least 10 out of 20 exons. Certain CD44 variant isoforms, in particular those containing CD44 variant domain 6 (CD44v6), have been implicated in tumourigenesis, tumour cell invasion and metastasis. Here we will give an overview of immunohistochemically determined CD44v6 expression in human malignancies (primary epithelial and nonepithelial tumours as well as metastases) and normal tissues, and review several examples of the clinical use of CD44v6-specific antibodies. In nonmalignant tissues, CD44v6 expression is essentially restricted to a subset of epithelia. Intense and homogeneous expression of CD44v6 was reported for the majority of squamous cell carcinomas and a proportion of adenocarcinomas of differing origin, but was rarely seen in nonepithelial tumours. This expression pattern has made CD44v6 an attractive target for antibody-guided therapy of various types of epithelium-derived cancers.Abbreviations CD44 type 1 transmembrane glycoprotein, cell surface receptor for hyaluronate - CD44s (CD44H) standard form of CD44 - CD44v6 splice variant exon 6 of CD44 - CTC common toxicity criteria - 2F10, VFF4, VFF7, VFF18 (BIWA 1), U36, V6B3, HB-256, Var 3.1 monoclonal antibodies targeting the CD44v6 antigen - SCC squamous cell carcinoma  相似文献   

15.
H Konig  J Moll  H Ponta    P Herrlich 《The EMBO journal》1996,15(15):4030-4039
Variant isoforms of the cell surface glycoprotein CD44 (CD44v) are expressed during development, in selected adult tissues and in certain metastatic tumor cells. CD44v differ from the standard isoform (CD44s) by up to ten additional exon sequences included by alternative splicing. By cell fusion experiments, we have obtained evidence for the existence of cell-type specific trans-acting factors recruiting CD44 variant exon sequences. Stable cell hybrids of CD44s and CD44v expressing cells indicated a dominant mechanism for variant-exon inclusion. In transient interspecies heterokaryons of human keratinocytes and rat fibroblasts, the ability of the keratinocytes to include all variant exon sequences in CD44 was conferred completely on the rat fibroblast nucleus. Fusions of cells with complex CD44 splice patterns do not permit interpretation of splice control by the relative abundance of a single trans-acting factor, but rather by (a) positively acting factor(s) recruiting variant exon sequences in the 3' to 5' direction and additional factors selecting individual exons. Since the pancreatic carcinoma cell line BSp73ASML (in contrast to the cervix carcinoma cell lines SiHa and ME180) could not transfer its specific splice pattern in cell fusions, we conclude that in some tumors, splicing is also controlled by mutation of cis-acting recognition sites.  相似文献   

16.
Breast cancers contain a heterogeneous population of cells with a small percentage that possess properties similar to those found in stem cells. One of the widely accepted markers of breast cancer stem cells (BCSCs) is the cell surface marker CD44. As a glycoprotein, CD44 is involved in many cellular processes including cell adhesion, migration and proliferation, making it pro-oncogenic by nature. CD44 expression is highly up-regulated in BCSCs, and has been implicated in tumorigenesis and metastasis. However, the genetic mechanism that leads to a high level of CD44 expression in breast cancer cells and BCSCs is not well understood. Here, we identify a novel cis-element of the CD44 directs gene expression in breast cancer cells in a cell type specific manner. We have further identified key trans-acting factor binding sites and nuclear factors AP-1 and NFκB that are involved in the regulation of cell-specific CD44 expression. These findings provide new insight into the complex regulatory mechanism of CD44 expression, which may help identify more effective therapeutic targets against the breast cancer stem cells and metastatic tumors.  相似文献   

17.
CD44 is a transmembrane glycoprotein, which can exist in a multitude of isoforms due to alternative splicing of the pre-mRNA. We have generated monoclonal antibodies to several of these variant regions, which are encoded by 10 additional exons in the extracellular part of the molecule. CD44 variant isoforms have been reported to be involved in the malignant progression of rat and human tumours. The precise localization of CD44 variant isoforms in normal developmental and morphogenetic processes is essential for diagnostic studies of human tumorigenesis. Therefore, we have analysed a large number of different human tissues by immunohistochemistry for the expression of CD44 isoforms containing either exons 4v, 6v or 9v. Expression of exon 9v-isoforms was detected in almost all epithelia analysed, with a few exceptions. Exon 6v isoforms are expressed only in squamous and glandular epithelia, e.g. skin epidermis, sweat and sebaceous glands, oesophagus, ducts of the mammary gland, salivary and prostate glands. Detection of exon 4v-encoded isoforms was restricted to the epidermis and the oesophagus. Similar tissue distributions of CD44 variant isoforms were observed in 10-week-old fetal tissues. Since one of the ligands of CD44 is hyaluronic acid (HA), we also analysed the tissue distribution of HA synthetase. HA synthetase was detected in all tissues analysed, showing good correlation with the expression of the standard form of CD44, CD44s.  相似文献   

18.

Background

Anaplastic thyroid cancer is considered to be one of the most aggressive human malignancies, and the mean survival time after diagnosis is approximately six months, regardless of treatments. This study aimed to examine how EpCAM and its related molecules are involved in the characteristics of anaplastic thyroid carcinoma.

Methodology/Principal Findings

Two differentiated thyroid cancer cell lines (TPC-1 and FTC-133), and two anaplastic thyroid cancer cell lines (FRO, ACT-1) were analyzed for expression of CD44 standard isoform (CD44s), CD44 variant isoforms, and EpCAM, and human aldehyde dehydrogenase-1 (ALDH1) enzymatic activity using flow cytometry. CD44s expression was higher in TPC-1 and FTC-133 than in the FRO and ACT-1, whereas ALDH1 activities were higher in FRO and ACT-1 than in TPC-1 and FTC-133. An inverse correlation between CD44s expression and ALDH1 activity was observed in all thyroid cancer cell lines. As for the expressions of CD44 variant isoforms, ACT-1 showed higher and FRO showed moderate CD44v6 expressions, whereas either TPC-1 or FTC-133 showed negative CD44v6 expression. EpCAM expressions in FRO and ACT-1 were higher than those in TPC-1 and FTC-133, and EpCAM expressions inversely correlated with those of CD44s. A positive correlation was observed between EpCAM expression and ALDH1 activity in thyroid cancer cell lines. In the RT-PCR analysis, the expression levels of EpCAM, caludin-7 and ALDH1 in FRO and ATC-1 cells were significantly higher than those in TPC-1 and FTC-133 cells. In clinical specimens of thyroid cancers, nuclear expression of EpCAM and high expression of CD44v6 were detected significantly more frequently in anaplastic carcinomas.

Conclusions/Significance

Our study suggests the possibility that EpCAM, together with CD44v6 and claudin-7 as well as ALDH1, may be involved in the development of the aggressive phenotype of anaplastic thyroid carcinoma. Our findings may suggest a novel therapeutic strategy for treatment of anaplastic thyroid carcinoma.  相似文献   

19.
The ceramide nanoliposome (CNL) has shown promise in being able to treat a variety of primary tumors. However, its potential for treating metastatic cancer remains unknown. In this study, we demonstrate that CNL increases anoikis while preventing cancer cell extravasation under both static and physiological fluid flow conditions. Mechanistically, CNL limits metastases by decreasing CD44 protein levels in human breast and pancreatic cancer cells via lysosomal degradation of CD44, independent of palmitoylation or proteasome targeting. siRNA down-regulation of CD44 mimics CNL-induced anoikis and diminished extravasation of cancer cells. Taken together, our data indicate that ceramide limits CD44-dependent cancer cell migration, suggesting that CNL could be used to prevent and treat solid tumor metastasis.  相似文献   

20.
《FEBS letters》2014,588(24):4573-4582
Loss of endothelial adherens junctions is involved in tumor metastasis. Here, we demonstrate that, in the metastatic Lu1205 melanoma cells, expression of the CD44 variant CD44v8-v10 induced junction disassembly and vascular endothelial (VE)-cadherin phosphorylation at Y658 and Y731. Short interfering RNA (siRNA)-mediated CD44 knockdown or sialic acid cleavage reversed these effects. Moreover, microspheres coated with recombinant CD44v8-v10 promoted endothelial junction disruption. Overexpression of CD44v8-v10 but not of standard CD44 (CD44s) promoted gap formation in the non-metastatic WM35 melanoma cells, whereas CD44 knockdown or neuraminidase treatment dramatically diminished melanoma transendothelial migration. Endothelial cells transfected with the phosphomimetic VE-cadherin mutant Y658E supported transmigration of CD44-silenced Lu1205 cells. Our findings imply that CD44 variant isoform (CD44v) but not CD44s regulates endothelial junction loss, promoting melanoma extravasation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号