首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Expression and modulation of CD44 variant isoforms in humans   总被引:15,自引:0,他引:15  
CD44 is a ubiquitous surface molecule that exists as a number of isoforms, generated by alternative splicing of 10 "variant" exons. Little is known about the expression and function of the variant isoforms, except that certain isoforms may play a role in cancer metastasis. We produced mAbs against CD44 variant regions encoded by exons 4v, 6v, and 9v, by immunizing mice with a fusion protein spanning variant exons 3v to 10v. A comprehensive analysis of human tissues revealed that CD44 variant isoforms were expressed widely throughout the body, principally by epithelial cells. However there was differential expression of CD44 variant exons by different epithelia. Most epithelia expressed exon 9v, but much fewer expressed 6v or 4v. The regions of epithelia that expressed the highest levels of the variant isoforms were the generative cells, particularly the basal cells of stratified squamous epithelium, and of glandular epithelium. CD44 variant isoforms were also expressed differentially by leukocytes, with CD44-9v expressed at very low levels and CD44-6v and 4v virtually absent. However, CD44-9v and CD44-6v were the main variants that were transiently upregulated on T cells after mitogenic stimulation and on myelomonocytic cell lines by TNF alpha and IFN gamma treatment. Some epithelial cell lines could preferentially upregulate CD44-6v upon IFN gamma incubation. These results show that CD44 variant isoforms are expressed much more widely than first appreciated, and that expression of the variant isoforms on some cell types can be modulated by particular cytokines.  相似文献   

2.
3.
4.
CD44v6: a target for antibody-based cancer therapy   总被引:15,自引:0,他引:15  
The human CD44 gene encodes type 1 transmembrane glycoproteins involved in cell-cell and cell-matrix interactions. The structural heterogeneity of the gene products is caused primarily by alternative splicing of at least 10 out of 20 exons. Certain CD44 variant isoforms, in particular those containing CD44 variant domain 6 (CD44v6), have been implicated in tumourigenesis, tumour cell invasion and metastasis. Here we will give an overview of immunohistochemically determined CD44v6 expression in human malignancies (primary epithelial and nonepithelial tumours as well as metastases) and normal tissues, and review several examples of the clinical use of CD44v6-specific antibodies. In nonmalignant tissues, CD44v6 expression is essentially restricted to a subset of epithelia. Intense and homogeneous expression of CD44v6 was reported for the majority of squamous cell carcinomas and a proportion of adenocarcinomas of differing origin, but was rarely seen in nonepithelial tumours. This expression pattern has made CD44v6 an attractive target for antibody-guided therapy of various types of epithelium-derived cancers.Abbreviations CD44 type 1 transmembrane glycoprotein, cell surface receptor for hyaluronate - CD44s (CD44H) standard form of CD44 - CD44v6 splice variant exon 6 of CD44 - CTC common toxicity criteria - 2F10, VFF4, VFF7, VFF18 (BIWA 1), U36, V6B3, HB-256, Var 3.1 monoclonal antibodies targeting the CD44v6 antigen - SCC squamous cell carcinoma  相似文献   

5.
CD44 is a family of glycoproteins involved in cell-cell and cell-matrix interactions. In addition to the major 90-kD form present on most hematopoietic cells, larger 140-230 kD forms are found on keratinocytes and carcinoma cell lines. These bigger isoforms of CD44 arise by alternative splicing that results in insertion of one or more of the "variant" exons into the extracellular part of the 90-kD constant form of the molecule. In rat, v6 (variant exon v6) containing form of CD44 confers metastatic potential to carcinoma cells, and therefore, it is of interest to study the distribution of this isoform in humans. We raised antibodies against a synthetic peptide containing a sequence encoded by the exon v6. A mAb thus obtained (designated Var3.1) strongly reacted with the plasma membranes of squamous cells in upper layers of skin and tonsil surface epithelia. Weaker staining was seen in germinal centers, vascular endothelia and enterocytes. Exon v6 containing forms of CD44 (CD44v6) were absent from tissue leukocytes and connective tissue components. In comparison, Hermes-3 epitope (on the constant part) containing forms of CD44 were preferentially localized in basal layers of epithelia, present on the surface on most leukocytes and connective tissue cells, and undetectable on the luminal surface of high endothelial venules. In benign neoplasms, epithelial cells stained with mAb Var3.1 like in normal tissues. In contrast, immunostaining of 30 squamous carcinoma specimens (both primary and metastatic lesions) revealed that malignant transformation resulted in downregulation or disappearance of Var3.1 epitope, but in majority of cases, not in diminished synthesis of the Hermes-3 epitope. Biochemical analyses showed that mAb Var3.1 recognized two major forms of CD44 (220 and 300 kD). In conclusion, epitopes on exon v6 and constant part of CD44 are differentially synthesized and regulated during normal and malignant growth of cells in man.  相似文献   

6.
7.
H Konig  J Moll  H Ponta    P Herrlich 《The EMBO journal》1996,15(15):4030-4039
Variant isoforms of the cell surface glycoprotein CD44 (CD44v) are expressed during development, in selected adult tissues and in certain metastatic tumor cells. CD44v differ from the standard isoform (CD44s) by up to ten additional exon sequences included by alternative splicing. By cell fusion experiments, we have obtained evidence for the existence of cell-type specific trans-acting factors recruiting CD44 variant exon sequences. Stable cell hybrids of CD44s and CD44v expressing cells indicated a dominant mechanism for variant-exon inclusion. In transient interspecies heterokaryons of human keratinocytes and rat fibroblasts, the ability of the keratinocytes to include all variant exon sequences in CD44 was conferred completely on the rat fibroblast nucleus. Fusions of cells with complex CD44 splice patterns do not permit interpretation of splice control by the relative abundance of a single trans-acting factor, but rather by (a) positively acting factor(s) recruiting variant exon sequences in the 3' to 5' direction and additional factors selecting individual exons. Since the pancreatic carcinoma cell line BSp73ASML (in contrast to the cervix carcinoma cell lines SiHa and ME180) could not transfer its specific splice pattern in cell fusions, we conclude that in some tumors, splicing is also controlled by mutation of cis-acting recognition sites.  相似文献   

8.
Recently, splice variants of CD44 have been described that confer metastatic potential to non-metastasizing rat pancreatic carcinoma and sarcoma cell lines. Using antibodies against variant CD44 (CD44v) sequences, we have examined the expression of variant CD44 glycoproteins on human lymphoid cells and tissues and in colorectal neoplasia. Lymphohematopoietic cells express low levels of CD44v glycoproteins. During the process of lymphocyte activation in vitro and in vivo, expression of CD44v glycoproteins is transiently upregulated. The reaction pattern of various antibodies indicates that these CD44 variants contain the domain encoded by exon v6, which is part of the variant that confers metastatic capability. In human colorectal neoplasia we observed overexpression of CD44 splice variants in all invasive carcinomas. Already at early stages of colorectal tumor progression exon v5 epitopes were overexpressed. Tumor progression was strongly related to expression of CD44 isoforms containing exon v6 encoded domains. The findings establish CD44 variants as tumor progression markers in colorectal cancer.  相似文献   

9.
Recently, splice variants of CD44 have been described that confer metastatic potential to non-metastasizing rat pancreatic carcinoma and sarcoma cell lines. Using antibodies against variant CD44 (CD44v) sequences, we have examined the expression of variant CD44 glycoproteins on human lymphoid cells and tissues and in colorectal neoplasia. Lymphohematopoietic cells express low levels of CD44v glycoproteins. During the process of lymphocyte activation in vitro and in vivo, expression of CD44v glycoproteins is transiently upregulated. The reaction pattern of various antibodies indicates that these CD44 variants contain the domain encoded by exon v6, which is part of the variant that confers metastatic capability. In human colorectal neoplasia we observed overexpression of CD44 splice variants in all invasive carcinomas. Already at early stages of colorectal tumor progression exon v5 epitopes were overexpressed. Tumor progression was strongly related to expression of CD44 isoforms containing exon v6 encoded domains. The findings establish CD44 variants as tumor progression markers in colorectal cancer.  相似文献   

10.
11.
Transient interactions between cancer stem cells and components of the tumor microenvironment initiate various signaling pathways crucial for carcinogenesis. Predominant hyaluronan (HA) receptor, CD44 is structurally and functionally one of the most variable cell surface receptors having the potential to generate a diverse repertory of CD44 isoforms by alternative splicing of variant exons and post-translational modifications. A structurally distinctive variant of CD44, CD44v10, has an inevitable role in malignant progression, invasion, and metastasis. This can be attributed to the binding of HA with CD44v10, which demonstrates a completely different behavioral pattern as compared to the other spliced variants of CD44 molecule. Absence of a comprehensively predicted crystal structure of human CD44s and CD44v10 is an impediment in understanding the resultant structural alterations caused by the binding of HA. Thus, in this study, we aim to predict the CD44s and CD44v10 structures to their closest native confirmation and study the HA binding-induced structural perturbations using homology modeling, molecular docking, and MD simulation approach. The results depicted that modeled 3D structures of CD44s and CD44v10 isoforms were found to be stable throughout MD simulations; however, a substantial decrease was observed in the binding affinity of HA with CD44v10 (?5.355 kcal/mol) as compared to CD44s. Furthermore, loss and gain of several H-bonds and hydrophobic interactions in CD44v10–HA complex during the simulation process not only elucidated the reason for decreased binding affinity for HA but also prompted toward the plausible role of HA-induced structural perturbations in occurrence and progression of carcinogenesis.  相似文献   

12.
13.
Hyaluronidase can modulate expression of CD44   总被引:5,自引:0,他引:5  
CD44 is a family of transmembrane glycoproteins with multiple isoforms generated by alternative exon splicing of a single gene. CD44 and its variants are expressed on a wide variety of cells including cancer cells. The mechanisms by which splice variant exons are selected are unknown. The presence of hyaluronan in the environment of the cell appears to influence that selection process. The expression of particular splice variants of CD44 as well as the simultaneous presence of hyaluronan is important for motility, invasion, and the metastatic spread of some tumors. The influence of hyaluronidase digestion on the expression of CD44 in human cancer cell lines was examined. CD44 isoforms containing alternatively spliced exons were sensitive to hyaluronidase digestion in all lines examined, but differences between cell lines were observed. Expression of CD44s, the standard form, was resistant to digestion in two of three cell lines. A tentative model was formulated proposing that CD44 isoforms containing splice variants are unstable, requiring the continuous presence of ligand for expression. CD44s is relatively more stable, not requiring the continuous presence of hyaluronan. Additionally, a number of new CD44 variant isoforms, not previously observed, were identified.  相似文献   

14.
The human CD44 gene encodes multiple isoforms of a transmembrane protein that differ in their extracellular domains as a result of alternative splicing of its variable exons. Expression of CD44 is tightly regulated according to the type and physiological status of a cell, with expression of high molecular weight isoforms by inclusion of variable exons and low molecular weight isoforms containing few or no variable exons. Human CD44 variable exon 3 (v3) can follow a specific alternative splicing route different from that affecting other variable exons. Here we map and functionally describe the splicing enhancer element within CD44 exon v3 which regulates its inclusion in the final mRNA. The v3 splicing enhancer is a multisite bipartite element consisting of a tandem nonamer, the XX motif, and an heptamer, the Y motif, located centrally in the exon. Each of the three sites of this multisite enhancer partially retains its splicing enhancing capacity independently from each other in CD44 and shows full enhancing function in gene contexts different from CD44. We further demonstrate that these motifs act cooperatively as at least two motifs are needed to maintain exon inclusion. Their action is differential with respect to the splice-site target abutting v3. The first X motif acts on the 3' splice site, the second X motif acts on both splice sites (as a bidirectional exonic splicing enhancer), and the Y motif acts on the 5' splice site. We also show that the multisite v3 splicing enhancer is functional irrespective of flanking intron length and spatial organization within v3.  相似文献   

15.
16.
C Wang  M Tammi  R Tammi 《Histochemistry》1992,98(2):105-112
Biotinylated hyaluronan (HA) binding complex (HABC) from bovine articular cartilage proteoglycan was used as a histological probe to study the localization of HA in human skin. The distribution of HA was compared with its presumptive cell surface receptor, CD44, using monoclonal antibodies. In epidermis both HA and CD44 were found in the basal and spinous cell layers, but neither was present in the stratum granulosum and stratum corneum. In the keratinizing parts of hair follicles, i.e. in the outer and inner epidermal root sheath, pilosebaceous duct and the actual hair, HA and CD44 were found between the vital but not the terminally differentiated cells. In the sebaceous glands a small amount of HA was found around all cells, whereas CD44 was restricted to the basal cell layer. The secretory acini of the sweat glands stained intensively with anti-CD44 antibodies but only weakly with HABC. In the sweat gland, CD44 was localized on the basal and lateral surfaces of the clear cells, whereas the dark cells and the myoepithelial cells were negative. Both the lower and upper layers of the sweat gland ducts showed a faint but constant staining for CD44 and only minor amounts of HA. While in the keratinizing skin epithelia both HA and its CD44 receptor showed an intense staining with a close co-distribution, in the sweat and sebaceous glands their distribution patterns were not similar. It is suggested that in epithelia with divergent differentiation programs the functions of CD44 and HA may be different.  相似文献   

17.
Summary Biotinylated hyaluronan (HA) binding complex (HABC) from bovine articular cartilage proteoglycan was used as a histological probe to study the localization of HA in human skin. The distribution of HA was compared with its presumptive cell surface receptor, CD44, using monoclonal antibodies. In epidermis both HA and CD44 were found in the basal and spinous cell layers, but neither was present in the stratum granulosum and stratum corneum. In the keratinizing parts of hair follicles, i.e. in the outer and inner epidermal root sheath, pilosebaceous duct and the actual hair, HA and CD44 were found between the vital but not the terminally differentiated cells. In the sebaceous glands a small amount of HA was found around all cells, whereas CD44 was restricted to the basal cell layer. The secretory acini of the sweat glands stained intensively with anti-CD44 antibodies but only weakly with HABC. In the sweat gland, CD44 was localized on the basal and lateral surfaces of the clear cells, whereas the dark cells and the myoepithelial cells were negative. Both the lower and upper layers of the sweat gland ducts showed a faint but constant staining for CD44 and only minor amounts of HA. While in the keratinizing skin epithelia both HA and its CD44 receptor showed an intense staining with a close co-distribution, in the sweat and sebaceous glands their distribution patterns were not similar. It is suggested that in epithelia with divergent differentiation programs the functions of CD44 and HA may be different.  相似文献   

18.
CD44 is a transmembrane glycoprotein that regulates a variety of genes related to cell-adhesion, migration, proliferation, differentiation, and survival. A large number of alternative splicing isoforms of CD44, containing various combinations of alternative exons, have been reported. CD44 standard (CD44s), which lacks variant exons, is widely expressed on the surface of most tissues and all hematopoietic cells. In contrast, CD44 variant isoforms show tissue-specific expression patterns and have been extensively studied as both prognostic markers and therapeutic targets in cancer and other diseases. In this study, we immunized mice with CHO-K1 cell lines overexpressing CD44v3-10 to obtain novel anti-CD44 mAbs. One of the clones, C44Mab-5 (IgG1, kappa), recognized both CD44s and CD44v3-10. C44Mab-5 also reacted with oral cancer cells such as Ca9-22, HO-1-u-1, SAS, HSC-2, HSC-3, and HSC-4 using flow cytometry. Moreover, immunohistochemical analysis revealed that C44Mab-5 detected 166/182 (91.2%) of oral cancers. These results suggest that the C44Mab-5 antibody may be useful for investigating the expression and function of CD44 in various cancers.  相似文献   

19.
 CD44 isoforms have been implicated in tumor progression and metastasis formation. This study presents a thorough immunohistochemical analysis of CD44 standard and isoform expression in normal human skin appendages and epidermis applying monoclonal antibodies against CD44s, CD44v3, -v4, -v5, -v6, and -v9. An improved immunohistochemical protocol with microwave-based antigen retrieval in paraffin sections and heavy metal amplification of the diaminobenzidine reaction product provided enhanced resolution and sensitivity as compared to studies on frozen sections. The hair follicle, the seborrheic and eccrine sweat glands were strongly positive for all CD44 isoforms studied. In the latter, the clear cells but not the dark (intercalated) cells were positive. The sudoriferous ducts adjacent to the glands were weakly positive for all CD44 isoforms and strongly positive near the skin surface. In the apocrine glands, the basal cells showed only a moderate positivity. The myoepithelial cells expressed only CD44s. In the epidermis, all CD44 isoforms were detectable, with strongest CD44 immunostaining in the lower third of the stratum spinosum and weaker staining in the stratum basale and the upper two-thirds of the stratum granulosum. The stratum granulosum and corneum were unreactive. Thus, a regional and cell type-specific CD44 expression was revealed. Accepted: 10 May 1996  相似文献   

20.
The CD44 gene contains 10 variable exons (v1-v10) that can be alternatively spliced to generate hundreds of different CD44 protein isoforms, several of which have been implicated in the metastatic spread of tumour cells. Here, we describe a cryptic splice site, in intron 6 of the human CD44 gene, used during mRNA processing. This cryptic splice site is used in conjunction with variable exon 3, or independently from it in the form of a pseudo-exon of 49 bp, which generates a stop codon by frame shift in the contiguous variable exon downstream. This pseudo-exon has been found inserted immediately 3' to any other variable exon from v4 to v10, in the final CD44 mRNA. The implication of this cryptic splice site in haltering CD44 protein translation is questioned in the context of Nonsense Mediated Decay and the overall regulation of CD44 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号