首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
造纸废水灌溉对滨海退化盐碱湿地土壤酶活性的响应   总被引:2,自引:0,他引:2  
夏孟婧  苗颖  陆兆华  谢国莉  裴定宇 《生态学报》2012,32(21):6599-6608
经生物塘处理后的造纸废水矿化度低,有机物质含量高,可用来改善滨海盐碱土壤。研究了不同量(每次灌溉深度为5、10、15和20 cm)处理后的造纸废水灌溉对土壤脲酶、磷酸酶、蔗糖酶、脱氢酶和过氧化氢酶活性的影响,通过酶活性的变化来反映对土壤改良的效果并寻求最佳灌溉量。结果表明:5种土壤酶上层(0-10 cm)和中层土壤(10-20 cm)的活性大于下层土壤(20-30 cm),造纸废水灌溉没有改变土壤酶活性在不同土层的分布规律;灌溉造纸废水对土壤脲酶和磷酸酶活性的提高主要发生在表层土壤,而对蔗糖酶、脱氢酶以及过氧化氢酶活性的提高主要发生在上层和中层土壤;20 cm灌溉对下层土壤酶活性的提高最明显。5种酶活性均受温度降雨等因素影响,最大值出现在8月份。总体上,灌溉量的增加能提高酶活性的增加程度,最佳灌溉量为20 cm,土壤脲酶、磷酸酶、蔗糖酶和脱氢酶相对对照分别提高了70.0%、30.9%、56.2%、135.2%和20.84%。酶活性与土壤盐碱度和微生物代谢商(qCO2)显著负相关,与速效磷和微生物量碳显著正相关,与有机质和速效氮相关性不显著。  相似文献   

2.
以内蒙古克鲁伦河流域呼伦贝尔典型草原为对象,设置了轻度、中度和重度退化3种类型样地,研究不同程度退化草原的物种组成、地上生物量、土壤理化性状、土壤微生物数量和酶活性,以及微生物生物量的变化.结果表明: 中度退化样地的群落物种丰富度最大,轻度退化样地的地上生物量显著高于重度退化样地.退化样地的土壤水分、养分(有机质、全氮),微生物量碳、氮,以及微生物数量和酶活性显著下降,土壤容重显著增加.退化样地的土壤微生物生物量碳、氮在128~185和5.6~13.6 g·kg-1,土壤脱氢酶和脲酶活性均与土壤容重呈显著负相关,与土壤全氮、有机质、微生物数量以及微生物生物量碳、氮呈显著正相关,地上生物量与土壤细菌和真菌数量呈不同程度的正相关.  相似文献   

3.
研究了内蒙古呼伦贝尔克氏针茅草原不同放牧强度下土壤脲酶、脱氢酶、蔗糖酶、过氧化氢酶活性及土壤微生物生物量在不同物候期的动态变化。结果表明,返青期、抽穗期、开花期及种子成熟期中度放牧区土壤脱氢酶活性显著高于轻度放牧区(P0.05);返青期、抽穗期、开花期以及种子成熟期,轻度、中度放牧土壤中过氧化氢酶活性显著高于重度放牧梯度(P0.05)。轻度放牧区土壤微生物生物量碳在种子成熟期显著高于抽穗期(P0.05),土壤微生物生物量氮在抽穗期及种子成熟期显著高于返青期、开花期(P0.05);中度放牧区土壤微生物生物量碳在返青期显著高于抽穗期、开花期及种子成熟期(P0.05),土壤微生物生物量氮在返青期显著高于抽穗期、开花期及种子成熟期(P0.05);重度放牧区种子成熟期土壤微生物生物量碳显著高于返青期、抽穗期及开花期(P0.05),种子成熟期土壤微生物生物量氮显著高于返青期、抽穗期及开花期(P0.05)。相关性分析表明,土壤过氧化氢酶活性与土壤微生物生物量氮呈显著正相关,土壤微生物生物量碳与微生物生物量氮呈极显著正相关。  相似文献   

4.
马欣  夏孟婧  陆兆华  裴定宇  刘志梅  苗颖 《生态学报》2010,30(11):3001-3009
造纸废水含有大量有机营养物质,可以用来恢复退化湿地。研究了处理后的造纸废水灌溉重度退化滨海盐碱湿地对土壤pH值、水溶性总盐、Na+、Cl-以及营养成分的影响。结果表明:灌溉后土壤pH值略有升高,没有加重土壤碱化;土壤水溶性总盐、Na+、Cl-分别比对照降低9.61%37.05%、3.16%21.66%、5.38%28.44%,且上层土壤降低率高于中下层土壤;土壤有机质、碱解氮、速效磷含量显著提高,增加率分别比对照高13.68%31.45%、30.01%101.2%、1.08%18.28%;速效钾含量没有显著提高。和正常芦苇湿地比较可知:灌溉后重度退化滨海盐碱湿地土壤化学性质得到改善,达到芦苇生长条件,可以进行芦苇湿地的恢复与重建。  相似文献   

5.
施用生物炭6年后对稻田土壤酶活性及肥力的影响   总被引:4,自引:0,他引:4  
利用田间定位试验,研究0(BC0)、7.5(BC1)、15(BC2)和22.5(BC3)t·hm-2水稻秸秆生物炭及3.75 t·hm-2水稻秸秆(STR)一次性施加6年后对稻田土壤肥力及酶活性的影响.结果表明: 施用生物炭6年后土壤有机碳、有效磷和速效钾含量显著增加,增幅分别为34.6%、12.4%和26.2%,土壤pH值和容重显著降低,但对土壤全氮含量无显著影响.土壤脲酶和酸性磷酸酶的活性显著增加,土壤荧光素二乙酸酯酶(FDA水解酶)和芳基硫酸酯酶的活性受到不同程度的抑制,其中,BC2处理的土壤脲酶活性增加量最大,增幅为36.5%.土壤酸性磷酸酶活性随着生物炭施加量的增加而增加,与土壤速效磷含量呈显著正相关关系;土壤FDA水解酶和脲酶主要与土壤速效钾含量有关;酸性磷酸酶和芳基硫酸酯酶与土壤容重呈显著正相关.施用生物炭6年后土壤脱氢酶和多酚氧化酶活性明显升高,增幅分别为48.8%和27.5%,而过氧化氢酶活性逐渐下降,且显著低于对照BC0.STR处理显著增加了土壤脲酶、FDA水解酶、脱氢酶、酸性磷酸酶和芳基硫酸酯酶的活性,降低了过氧化氢酶和多酚氧化酶的活性,降幅分别为23.4%和15.9%.  相似文献   

6.
研究了陕西省铜川煤矿矿区的重金属污染状况以及不同程度的重金属污染对土壤微生物代谢、微生物群落功能以及土壤酶活性的影响.结果表明: 铜川矿区土壤中重金属Cu、Zn、Cd、Pb全量及有效量均显著高于非矿区土壤,其中Cd污染最为严重.采用Biolog方法结合主成分分析和聚类分析发现,随着污染程度的增加,不同土壤微生物群落间的代谢特征发生显著变化,而且这种变化主要体现在糖类和氨基酸类碳源的利用差异.在轻度、中度污染情况下,土壤微生物群落对碳源的利用表现出激活效应;而在重度污染的情况下,土壤微生物群落对碳源的利用表现出抑制效应.随着污染程度的增加,脲酶、蛋白酶、碱性磷酸酶和过氧化氢酶的活性均呈现降低的趋势,矿区土壤脲酶、蛋白酶、碱性磷酸酶和过氧化氢酶活性分别是非矿区土壤中相应酶活性的50.5%~65.1%、19.1%~57.1%、87.2%~97.5%、77.3%~86.0%;蔗糖酶和纤维素酶在中等污染程度以下的土壤中表现为激活效应,而在重度污染的土壤中表现为抑制效应.  相似文献   

7.
退化高寒草原土壤生物学性质的变化   总被引:13,自引:0,他引:13  
对藏北退化高寒草原的土壤生物学性质研究表明:轻度退化草地2~10cm土层微生物(细菌、真菌、放线菌)数量与生物量(碳、氮)、土壤酶(纤维素酶、脲酶、碱性磷酸酶)活性和有机质总体上高于正常草地,中度、严重退化草地则均呈显著降低趋势.微生物生物量碳氮比(BC/BN)与土壤全碳、全氮比(TC/TN)呈极显著正相关(r=0.9088,P≤0.01;n=4);与正常草地相比,轻度、中度退化草地BC/TC、BN/TN值均呈上升趋势,而严重退化草地则呈明显下降趋势.土壤微生物生物量与土壤酶活性呈极显著或显著正相关,但二者均与土壤放线菌数量呈不同程度的负相关;2~10cm土层有机质与土壤微生物生物量、土壤酶活性均呈极显著或显著正相关;随草地退化的加剧,2~10cm和11~20cm土层腐殖质碳占土壤有机碳比重,以及胡敏酸碳占土壤腐殖质碳比重均较正常草地明显上升.  相似文献   

8.
土壤中氮素的吸收、转化及含量的变化是影响植被生长的关键因素。为探讨湿地植被不同退化状态对土壤氮组分含量和相关酶活性的影响,以及土壤氮组分含量与相关酶活性之间的关系,以甘南尕海湿地不同植被退化状态样地(未退化CK、轻度退化SD、中度退化MD和重度退化HD)为研究对象,采用野外采样与室内实验相结合的方法,分析了植被不同退化状态下不同形态氮组分(全氮、铵态氮、硝态氮和微生物量氮)含量的变化特征,以及土壤氮转化酶(蛋白酶、脲酶、硝酸还原酶和亚硝酸还原酶)活性之间的相关关系。结果表明:(1)在植被退化状态下,土壤含水量逐渐减小,土壤温度呈先减小后增大的趋势;(2)随着植被退化程度的加剧,硝态氮含量呈增加趋势,而全氮、铵态氮和微生物量氮含量均随退化程度加剧呈减小趋势;土壤蛋白酶活性随退化程度的加剧而减小,脲酶活性呈先减小后增大的趋势,重度退化活性最高,轻度退化最低;硝酸还原酶活性随退化程度的加剧而增加,亚硝酸还原酶活性表现为"升-降-升"的变化趋势,即轻度退化活性最高,未退化和中度退化较低;(3)土壤蛋白酶活性与全氮、铵态氮和微生物量氮呈极显著正相关关系(P < 0.01),与硝态氮含量呈显著负相关关系(P < 0.05);硝酸还原酶活性与蛋白酶活性恰好相反;脲酶活性与微生物量氮含量呈极显著正相关关系(P < 0.01),与全氮含量呈显著正相关关系(P < 0.05);亚硝酸还原酶活性与全氮和铵态氮含量呈极显著正相关关系(P < 0.01),与硝态氮含量呈显著负相关关系(P < 0.05)。综上,在尕海湿地植被退化条件下,土壤氮组分含量增加可以有效提高相关酶活性。  相似文献   

9.
液体地膜覆盖对棉田土壤微生物和酶活性的影响   总被引:15,自引:1,他引:14  
杨青华  韩锦峰  贺德先 《生态学报》2005,25(6):1312-1317
通过液体地膜不同用量覆盖棉田对土壤微生物数量和酶活性的影响研究表明适量液体地膜(112.5~150kg/hm2)覆盖棉田显著增加土壤微生物细菌、放线菌和真菌数量,增强土壤过氧化氢酶、脲酶、转化酶、中性磷酸酶和多酚氧化酶活性,且这种效应受棉花生长发育进程的影响。表明液体地膜覆盖棉田有益于土壤物质的转化、累积,提高土壤的肥力,对土壤化学特性无不良影响。  相似文献   

10.
黄河三角洲重度退化滨海湿地盐地碱蓬的生态修复效果   总被引:5,自引:0,他引:5  
采用翻地、施肥和芦苇碎屑培肥等土壤改良方法,利用盐地碱蓬在黄河三角洲重度退化区进行生态修复实验研究。结果表明:重度退化湿地土壤改良后,盐地碱蓬能够成功生长,3种改良方法均可有效的降低重度退化盐碱地的土壤含盐量,改良后的土壤Na离子含量均显著低于对照组,土壤脲酶和磷酸酶活性与对照相比有了显著的提高,表明改良后土壤肥力得到了改善。3种改良方法比较,培肥处理组土壤Na离子含量显著低于其他两种方法;盐地碱蓬生物量达到最高值,说明增加有机物的培肥方法可有效的改良重度退化盐碱湿地土壤,达到较为理想的生态修复预期效果。  相似文献   

11.
Feng  Wenting  Schaefer  Douglas A.  Zou  Xiaoming  Zhang  Min 《Ecological Research》2011,26(2):437-444
Labile organic carbon (LOC) is a critical component of soil organic carbon (C) because of its intimate association with soil heterotrophic respiration and role in the decomposition of resistant soil organic matter. In a subtropical moist evergreen broad-leaved forest of southwest China, we examined changes of LOC and its potential turnover time, microbial biomass C (MBC), and soil microbial activity of the organic and the 0–10 cm mineral soil layers with aboveground plant litter and belowground root treatments. In February of 2004, removal of organic layer, root-trenching, and tree-girdling treatments were applied alone and in combination to manipulate plant-C inputs. In 2006, root-trenching and tree-girdling treatments did not significantly change LOC in the organic layer. In the 0–10 cm mineral soil layer, LOC increased substantially due to tree-girdling treatment, especially in the plots of tree-girdling and the combinations of three treatments, but this increase was absent in 2007. Soil MBC in these two layers generally did not change markedly after plant-C inputs manipulations except significant increase under tree-girdling treatment in 2006. The potential turnover times of LOC increased in all plots with the plant-C inputs manipulations. The lack of influence of plant-C inputs manipulations on LOC pools is likely due to high total soil organic C here, while insignificant changes of MBC suggest the soil microbes are not C limited in this forest. The changes of the potential turnover time of LOC imply that the sources of LOC have been shifted from fresh plant litter or root exudates to old soil organic C. Our results suggest that LOC recently derived from plants is preferred by microbes when available, but microbes can also use LOC from soil organic matter when fresh plant C is not available.  相似文献   

12.
针对目前连作导至植烟土壤酸化和根茎病害发生重的问题,田间条件下,研究了嗜酸性韩国假单胞Pseudomonas koreensis CLP-7对酸化植烟土壤pH、养分、酶活性及微生物群落功能多样性的影响。结果表明:CLP-7可以提高酸化植烟土壤pH;同时,CLP-7显著提高根际土壤速效钾、有效磷、铵态氮、硝态氮和有机质含量,其中有机质含量增加最显著;根际土壤脲酶、蔗糖酶活性呈上升趋势且均高于未施菌土壤,过氧化氢酶活性变化不明显。CLP-7处理不同时间的土壤微生物代谢多样性指数表现出明显的差异,施菌30 d时Shannon指数、Simpson指数,Richness及McIntosh指数均达到最高;所有处理的Pielou指数变化较小。微生物碳代谢主成分分析结果显示,施菌30 d时,根际土壤微生物对碳源利用与其他处理差异显著,主要为羧酸类和糖类碳源;随着施菌时间增加,微生物对氨基酸类、羧酸类、双亲化合物类、聚合物类和糖类利用率明显提高,说明CLP-7有利于提高连作烟田根际土壤微生物对碳源的利用能力。综上所述,P.koreensis CLP-7能够明显提高土壤pH、土壤酶活性,增加土壤养分含量和土壤微生物群落功能多样性,进而改善酸化植烟土壤质量,在微生物修复酸化土壤和减轻根茎病害发生的烟草绿色防控中具有较大的应用潜力。  相似文献   

13.
模拟氮沉降对太岳山油松林土壤酶活性的影响   总被引:5,自引:0,他引:5  
刘星  汪金松  赵秀海 《生态学报》2015,35(14):4613-4624
为研究土壤酶活性对氮沉降增加的响应,以山西太岳山油松人工林和天然林为研究对象,于2009年8月开始实施模拟氮沉实验,试验设置对照(CK,0 kg N hm-2a-1);低氮(LN,50 kg N hm-2a-1);中氮(MN,100 kg N hm-2a-1);高氮(HN,150 kg N hm-2a-1)4种氮处理,自2012年起每年5、7、9月在各处理样方采集表层0—20 cm土壤,测定土壤酶活性(过氧化物酶、多酚氧化酶、纤维素酶、蔗糖酶、脲酶、中性磷酸酶)。研究结果表明:施氮处理下的脲酶与中性磷酸酶活性均有所提高,而低氮处理下天然林中的多酚氧化酶与人工林中的蔗糖酶显著低于对照,中氮、高氮处理下过氧化物酶、多酚氧化酶、天然林中的纤维素酶以及人工林中的蔗糖酶显著降低。总的来说,人工模拟氮沉降促进了土壤中脲酶和中性磷酸酶的活性,抑制了过氧化物酶和多酚氧化酶的活性,并降低了天然林土壤中的纤维素酶活性和人工林中的蔗糖酶活性,但对天然林中蔗糖酶和人工林中的纤维素酶无影响。主导木质素降解的多酚氧化酶活性与纤维素酶、蔗糖酶活性显著相关,纤维素酶与蔗糖酶活性的下降可能是由木质素降解受到抑制,土壤微生物可利用碳源减少所引起。另外,受到天然林土壤含氮量较高的影响,与人工林相比,天然林的多酚氧化酶活性对模拟氮沉降更敏感。由于被抑制的酶均与土壤有机质降解密切相关,氮沉降增加将减缓山西油松林土壤有机质的降解,有利于有机质在土壤中的积累。  相似文献   

14.
Mechanisms of plant species impacts on ecosystem nitrogen cycling   总被引:16,自引:0,他引:16  
Plant species are hypothesized to impact ecosystem nitrogen cycling in two distinctly different ways. First, differences in nitrogen use efficiency can lead to positive feedbacks on the rate of nitrogen cycling. Alternatively, plant species can also control the inputs and losses of nitrogen from ecosystems. Our current understanding of litter decomposition shows that most nitrogen present within litter is not released during decomposition but incorporated into soil organic matter. This nitrogen retention is caused by an increase in the relative nitrogen content in decomposing litter and a much lower carbon‐to‐nitrogen ratio of soil organic matter. The long time lag between plant litter formation and the actual release of nitrogen from the litter results in a bottleneck, which prevents feedbacks of plant quality differences on nitrogen cycling. Instead, rates of gross nitrogen mineralization, which are often an order of magnitude higher than net mineralization, indicate that nitrogen cycling within ecosystems is dominated by a microbial nitrogen loop. Nitrogen is released from the soil organic matter and incorporated into microbial biomass. Upon their death, the nitrogen is again incorporated into the soil organic matter. However, this microbial nitrogen loop is driven by plant‐supplied carbon and provides a strong negative feedback through nitrogen cycling on plant productivity. Evidence supporting this hypothesis is strong for temperate grassland ecosystems. For other terrestrial ecosystems, such as forests, tropical and boreal regions, the data are much more limited. Thus, current evidence does not support the view that differences in the efficiency of plant nitrogen use lead to positive feedbacks. In contrast, soil microbes are the dominant factor structuring ecosystem nitrogen cycling. Soil microbes derive nitrogen from the decomposition of soil organic matter, but this microbial activity is driven by recent plant carbon inputs. Changes in plant carbon inputs, resulting from plant species shifts, lead to a negative feedback through microbial nitrogen immobilization. In contrast, there is abundant evidence that plant species impact nitrogen inputs and losses, such as: atmospheric deposition, fire‐induced losses, nitrogen leaching, and nitrogen fixation, which is driven by carbon supply from plants to nitrogen fixers. Additionally, plants can influence the activity and composition of soil microbial communities, which has the potential to lead to differences in nitrification, denitrification and trace nitrogen gas losses. Plant species also impact herbivore behaviour and thereby have the potential to lead to animal‐facilitated movement of nitrogen between ecosystems. Thus, current evidence supports the view that plant species can have large impacts on ecosystem nitrogen cycling. However, species impacts are not caused by differences in plant quantity and quality, but by plant species impacts on nitrogen inputs and losses.  相似文献   

15.
Arctic soils contain large amounts of organic matter due to very slow rates of detritus decomposition. The first step in decomposition results from the activity of extracellular enzymes produced by soil microbes. We hypothesized that potential enzyme activities are low relative to the large stocks of organic matter in Arctic tundra soils, and that enzyme activity is low at in situ temperatures. We measured the potential activity of six hydrolytic enzymes at 4 and 20 °C on four sampling dates in tussock, intertussock, shrub organic, and shrub mineral soils at Toolik Lake, Alaska. Potential activities of N‐acetyl glucosaminidase, β‐glucosidase, and peptidase tended to be greatest at the end of winter, suggesting that microbes produced enzymes while soils were frozen. In general, enzyme activities did not increase during the Arctic summer, suggesting that enzyme production is N‐limited during the period when temperatures would otherwise drive higher enzyme activity in situ. We also detected seasonal variations in the temperature sensitivity (Q10) of soil enzymes. In general, soil enzyme pools were more sensitive to temperature at the end of the winter than during the summer. We modeled potential in situβ‐glucosidase activities for tussock and shrub organic soils based on measured enzyme activities, temperature sensitivities, and daily soil temperature data. Modeled in situ enzyme activity in tussock soils increased briefly during the spring, then declined through the summer. In shrub soils, modeled enzyme activities increased through the spring thaw into early August, and then declined through the late summer and into winter. Overall, temperature is the strongest factor driving low in situ enzyme activities in the Arctic. However, enzyme activity was low during the summer, possibly due to N‐limitation of enzyme production, which would constrain enzyme activity during the brief period when temperatures would otherwise drive higher rates of decomposition.  相似文献   

16.
Climatic change, such as increases in extreme drought and rainfall events and changes in rainfall intensity and pattern, has been strongly influencing soil moisture. The climatic change impact is particularly common in arid, semi-arid and Mediterranean regions, which is causing dramatic changes in the intensity and frequency of soil drying–rewetting cycles. The soil drying–rewetting cycle is a natural phenomenon that the soil experiences drying, then wetting, and then drying and rewetting again and again. When a dry soil is being rewetted, the amount of soil microbial biomass and its activity can be sharply increasing in a short time period, and then a large amount of gaseous carbon (C) and nitrogen (N) erupts from the soil. The sudden release of gaseous C and N is caused by the stimulation of the soil microbes. Such a phenomenon is called “Birch effect”. The drying–rewetting cycles have direct and indirect effects on soil microbes, and soil microbial responses to the drying and rewetting events play an important role in the feedbacks of terrestrial ecosystems. From aspects of soil microbial biomass, microbial activities and microbial structure, we review recent advances on studies regarding microbial responses to soil drying–rewetting cycles. We interpret the microbial responses using five different types of mechanisms: (1) Microbial stress mechanism: when a soil becomes dry, microorganisms must accumulate compatible solutes such as carbohydrates and aminoacids so that the soil microbes can equilibrate with their environment in order to avoid dehydrating and being killed. When the soil is rewetted, soil microbes must dispose of those osmolytes rapidly by transforming them into carbon dioxide (CO2), dissolved organic carbon (DOC) and nutrients in order to prevent water from being flowing into the cells. (2) Substrate supply mechanism: low soil moisture may result in the physical disruption of soil aggregates which leads to the exposure of new soil surfaces and of previously protected organic matter. When the soil is rewetted, its physical structure is further disrupted by swelling. The increased new soil surfaces and previously protected organic matter will improve the microorganism’s nutrient availability. (3) Soil hydrophobicity mechanism: soil hydrophobicity can cause the reduction of soil moisture and nutrient availability and inhibition of microbial decomposition of soil organic matter. Therefore, soil hydrophobicity is an important factor of explaining the activity of microorganism in drying and rewetting events. (4) Diffusive limitations mechanism: transportation of the soil microbe is limited in a dry soil. When soil moisture is increasing, soil microbial activity is enhanced along with the increased availability of substrate nutrients. (5) Predation mechanism: a moist soil is usually conducive to the increase of bacteria and fungi populations. In response, protozoa and nematodes also increase, leading to the fluctuation of the soil microbial community structure. On the basis of the literature review, we propose five important aspects to be considered in the future: (1) assessing soil microbes’ concrete adapting ways to the drying–rewetting cycles, (2) evaluating the microbial responses to the drying–rewetting cycles based on suitable indicators, (3) interpreting microbial responses to the drying–rewetting cycles by combining field investigation and laboratory controlling experiment, (4) investigating the microbial responses to the drying–rewetting cycles at different temporal and spatial scales.  相似文献   

17.
《Global Change Biology》2018,24(6):2721-2734
Atmospheric nitrogen (N) deposition has enhanced soil carbon (C) stocks in temperate forests. Most research has posited that these soil C gains are driven primarily by shifts in fungal community composition with elevated N leading to declines in lignin degrading Basidiomycetes. Recent research, however, suggests that plants and soil microbes are dynamically intertwined, whereby plants send C subsidies to rhizosphere microbes to enhance enzyme production and the mobilization of N. Thus, under elevated N, trees may reduce belowground C allocation leading to cascading impacts on the ability of microbes to degrade soil organic matter through a shift in microbial species and/or a change in plant–microbe interactions. The objective of this study was to determine the extent to which couplings among plant, fungal, and bacterial responses to N fertilization alter the activity of enzymes that are the primary agents of soil decomposition. We measured fungal and bacterial community composition, root–microbial interactions, and extracellular enzyme activity in the rhizosphere, bulk, and organic horizon of soils sampled from a long‐term (>25 years), whole‐watershed, N fertilization experiment at the Fernow Experimental Forest in West Virginia, USA. We observed significant declines in plant C investment to fine root biomass (24.7%), root morphology, and arbuscular mycorrhizal (AM) colonization (55.9%). Moreover, we found that declines in extracellular enzyme activity were significantly correlated with a shift in bacterial community composition, but not fungal community composition. This bacterial community shift was also correlated with reduced AM fungal colonization indicating that declines in plant investment belowground drive the response of bacterial community structure and function to N fertilization. Collectively, we find that enzyme activity responses to N fertilization are not solely driven by fungi, but instead reflect a whole ecosystem response, whereby declines in the strength of belowground C investment to gain N cascade through the soil environment.  相似文献   

18.
The fate, as well as the consequence for plant nutrition, of the additional carbon entering soil under elevated CO2 is largely determined by the activity of soil microorganisms. However, most elevated CO2 studies have documented changes (generally increases) in microbial biomass and total infection by symbiotic organisms, which is only a first step in the understanding of the modification of soil processes. Using a Mediterranean model ecosystem, we complemented these variables by analyzing changes in enzymatic activities, hyphal lengths, and bacterial substrate assimilation, to tentatively identify the specific components affected under elevated CO2 and those which suggest changes in soil organic matter pools. We also investigated changes in the functional structures of arbuscular mycorrhizas. Most of the microbial variables assessed showed significant and substantial increase under elevated CO2, of the same order or less than those observed for root mass and length. The increase in dehydrogenase activity indicates that the larger biomass of microbes was accompanied by an increase in their activity. The increase in hyphal length (predominantly of saprophytic fungi), and xylanase, cellulase and phosphatase activities, suggests an overall stimulation of organic matter decomposition. The higher number of substrates utilized by microorganisms from the soil under elevated CO2 was significant for the amine/amide group. Total arbuscular and vesicular mycorrhizal infection of roots was higher under elevated CO2, but the proportion of functional structures was not modified. These insights into the CO2-induced changes in soil biological activity point towards potential areas of investigation complementary to a direct analysis of the soil organic matter pools.  相似文献   

19.
土壤活性有机碳   总被引:47,自引:6,他引:41  
柳敏  宇万太  姜子绍  马强 《生态学杂志》2006,25(11):1412-1417
土壤活性有机碳是土壤中活跃的化学组分,能显著影响土壤化学物质的溶解、吸附、解吸、吸收、迁移乃至生物毒性等行为,近年来土壤活性有机碳已成为土壤、环境和生态科学领域所关注的焦点和研究的热点。本文从土壤活性有机碳的来源、组成、含量、影响因素以及环境意义等方面做了简要的论述。一般认为,土壤活性有机碳来源于植物凋落物的分解、根系分泌物、土壤有机质的水解、土壤微生物本身及其代谢产物,因为来源的不同土壤活性有机碳含量也不同;影响土壤活性有机碳的因素有很多,研究表明,土壤活性有机碳随季节和湿度的变化呈现十分强烈的变异趋势;土地利用方式改变对土壤活性有机碳的影响在不同的研究中有不同的结果;土地管理措施如耕作、施有机肥和化肥、改变土壤pH值等对土壤活性有机碳也有很大的影响。土壤活性有机碳的生态环境效应主要表现在它对调节土壤养分流有很大影响,与土壤内在的生产力高度相关;它作为重金属的有机配体,对土壤溶液中的微量重金属的可移动性和迁移过程以及金属复合物的形成过程有着重要作用;它的存在影响农药在土壤中的截留、增加农药的水溶性,并影响农药在土壤中的运动;它对温室气体的排放、水体富营养化、岩石圈溶蚀都有很重要的作用。同时指出了未来的研究方向。  相似文献   

20.
A 10-year (2005–2015) field experiment was conducted to study the effects of an integrated rice-crayfish (CR) model on soil organic carbon, enzyme activity, and microbial diversity at soil depths of 0–10?cm, 10–20?cm, 20–30?cm, and 30–40?cm. Compared with a mid-season rice monoculture (MR) model, total organic carbon (TOC), particle organic carbon (POC), and water-soluble organic carbon (WSOC) were significantly higher in the 0–40?cm soil layers, and the content of microbial biomass carbon (MBC) was significantly higher in the 30–40?cm soil layer in the CR model. The ratios of WSOC to TOC and POC to TOC in the 0–40?cm soil layers in CR model exhibited an increasing trend, whereas the ratio of MBC to TOC in the 0–30?cm layers exhibited a decreasing trend with respect to that of the MR model, however, these differences were not statistically significant. The activity of soil invertase, acid phosphatase, and urease in the 0–40?cm soil layers in the CR model exhibited a decreasing trend with respect to that of the MR model, and the activity of urease in the 10–20?cm soil layer in the CR model was significantly lower than that in the MR model. Compared with the MR model, the CR model significantly enhanced the carbon utilization capacity of soil microbes, and the richness index, dominance index, and diversity index of the soil microbial community in the 20–30?cm layer, whereas it significantly decreased the number of dominant soil microorganism species and the carbon utilization capacity of soil microbes in the 0–10?cm layer. Soil organic carbon and its active components had a significant direct correlation with the microbial diversity index, and significantly positive correlations with invertase, urease, and acid phosphatase. With respect to the soil microbial diversity index, soil organic carbon and its active components had a closer relationship with soil enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号