首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total white blood cell (WBC) and neutrophil counts are lower among individuals of African descent due to the common African-derived "null" variant of the Duffy Antigen Receptor for Chemokines (DARC) gene. Additional common genetic polymorphisms were recently associated with total WBC and WBC sub-type levels in European and Japanese populations. No additional loci that account for WBC variability have been identified in African Americans. In order to address this, we performed a large genome-wide association study (GWAS) of total WBC and cell subtype counts in 16,388 African-American participants from 7 population-based cohorts available in the Continental Origins and Genetic Epidemiology Network. In addition to the DARC locus on chromosome 1q23, we identified two other regions (chromosomes 4q13 and 16q22) associated with WBC in African Americans (P<2.5×10(-8)). The lead SNP (rs9131) on chromosome 4q13 is located in the CXCL2 gene, which encodes a chemotactic cytokine for polymorphonuclear leukocytes. Independent evidence of the novel CXCL2 association with WBC was present in 3,551 Hispanic Americans, 14,767 Japanese, and 19,509 European Americans. The index SNP (rs12149261) on chromosome 16q22 associated with WBC count is located in a large inter-chromosomal segmental duplication encompassing part of the hydrocephalus inducing homolog (HYDIN) gene. We demonstrate that the chromosome 16q22 association finding is most likely due to a genotyping artifact as a consequence of sequence similarity between duplicated regions on chromosomes 16q22 and 1q21. Among the WBC loci recently identified in European or Japanese populations, replication was observed in our African-American meta-analysis for rs445 of CDK6 on chromosome 7q21 and rs4065321 of PSMD3-CSF3 region on chromosome 17q21. In summary, the CXCL2, CDK6, and PSMD3-CSF3 regions are associated with WBC count in African American and other populations. We also demonstrate that large inter-chromosomal duplications can result in false positive associations in GWAS.  相似文献   

2.
White blood cells (WBCs) mediate immune systems and consist of various subtypes with distinct roles. Elucidation of the mechanism that regulates the counts of the WBC subtypes would provide useful insights into both the etiology of the immune system and disease pathogenesis. In this study, we report results of genome-wide association studies (GWAS) and a replication study for the counts of the 5 main WBC subtypes (neutrophils, lymphocytes, monocytes, basophils, and eosinophils) using 14,792 Japanese subjects enrolled in the BioBank Japan Project. We identified 12 significantly associated loci that satisfied the genome-wide significance threshold of P<5.0×10−8, of which 9 loci were novel (the CDK6 locus for the neutrophil count; the ITGA4, MLZE, STXBP6 loci, and the MHC region for the monocyte count; the SLC45A3-NUCKS1, GATA2, NAALAD2, ERG loci for the basophil count). We further evaluated associations in the identified loci using 15,600 subjects from Caucasian populations. These WBC subtype-related loci demonstrated a variety of patterns of pleiotropic associations within the WBC subtypes, or with total WBC count, platelet count, or red blood cell-related traits (n = 30,454), which suggests unique and common functional roles of these loci in the processes of hematopoiesis. This study should contribute to the understanding of the genetic backgrounds of the WBC subtypes and hematological traits.  相似文献   

3.
Psoriasis (PS) and Crohn disease (CD) have been shown to be epidemiologically, pathologically, and therapeutically connected, but little is known about their shared genetic causes. We performed meta-analyses of five published genome-wide association studies on PS (2,529 cases and 4,955 controls) and CD (2,142 cases and 5,505 controls), followed up 20 loci that showed strongest evidence for shared disease association and, furthermore, tested cross-disease associations for previously reported PS and CD risk alleles in additional 6,115 PS cases, 4,073 CD cases, and 10,100 controls. We identified seven susceptibility loci outside the human leukocyte antigen region (9p24 near JAK2, 10q22 at ZMIZ1, 11q13 near PRDX5, 16p13 near SOCS1, 17q21 at STAT3, 19p13 near FUT2, and 22q11 at YDJC) shared between PS and CD with genome-wide significance (p < 5 × 10−8) and confirmed four already established PS and CD risk loci (IL23R, IL12B, REL, and TYK2). Three of the shared loci are also genome-wide significantly associated with PS alone (10q22 at ZMIZ1, prs1250544 = 3.53 × 10−8, 11q13 near PRDX5, prs694739 = 3.71 × 10−09, 22q11 at YDJC, prs181359 = 8.02 × 10−10). In addition, we identified one susceptibility locus for CD (16p13 near SOCS1, prs4780355 = 4.99 × 10−8). Refinement of association signals identified shared genome-wide significant associations for exonic SNPs at 10q22 (ZMIZ1) and in silico expression quantitative trait locus analyses revealed that the associations at ZMIZ1 and near SOCS1 have a potential functional effect on gene expression. Our results show the usefulness of joint analyses of clinically distinct immune-mediated diseases and enlarge the map of shared genetic risk loci.  相似文献   

4.
Blood pressure (BP) is a heritable, quantitative trait with intraindividual variability and susceptibility to measurement error. Genetic studies of BP generally use single-visit measurements and thus cannot remove variability occurring over months or years. We leveraged the idea that averaging BP measured across time would improve phenotypic accuracy and thereby increase statistical power to detect genetic associations. We studied systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP) averaged over multiple years in 46,629 individuals of European ancestry. We identified 39 trait-variant associations across 19 independent loci (p < 5 × 10−8); five associations (in four loci) uniquely identified by our LTA analyses included those of SBP and MAP at 2p23 (rs1275988, near KCNK3), DBP at 2q11.2 (rs7599598, in FER1L5), and PP at 6p21 (rs10948071, near CRIP3) and 7p13 (rs2949837, near IGFBP3). Replication analyses conducted in cohorts with single-visit BP data showed positive replication of associations and a nominal association (p < 0.05). We estimated a 20% gain in statistical power with long-term average (LTA) as compared to single-visit BP association studies. Using LTA analysis, we identified genetic loci influencing BP. LTA might be one way of increasing the power of genetic associations for continuous traits in extant samples for other phenotypes that are measured serially over time.  相似文献   

5.
There is increasing evidence that the microcirculation plays an important role in the pathogenesis of cardiovascular diseases. Changes in retinal vascular caliber reflect early microvascular disease and predict incident cardiovascular events. We performed a genome-wide association study to identify genetic variants associated with retinal vascular caliber. We analyzed data from four population-based discovery cohorts with 15,358 unrelated Caucasian individuals, who are members of the Cohort for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and replicated findings in four independent Caucasian cohorts (n = 6,652). All participants had retinal photography and retinal arteriolar and venular caliber measured from computer software. In the discovery cohorts, 179 single nucleotide polymorphisms (SNP) spread across five loci were significantly associated (p<5.0×10(-8)) with retinal venular caliber, but none showed association with arteriolar caliber. Collectively, these five loci explain 1.0%-3.2% of the variation in retinal venular caliber. Four out of these five loci were confirmed in independent replication samples. In the combined analyses, the top SNPs at each locus were: rs2287921 (19q13; p = 1.61×10(-25), within the RASIP1 locus), rs225717 (6q24; p?=?1.25×10(-16), adjacent to the VTA1 and NMBR loci), rs10774625 (12q24; p = 2.15×10(-13), in the region of ATXN2,SH2B3 and PTPN11 loci), and rs17421627 (5q14; p?=?7.32×10(-16), adjacent to the MEF2C locus). In two independent samples, locus 12q24 was also associated with coronary heart disease and hypertension. Our population-based genome-wide association study demonstrates four novel loci associated with retinal venular caliber, an endophenotype of the microcirculation associated with clinical cardiovascular disease. These data provide further insights into the contribution and biological mechanisms of microcirculatory changes that underlie cardiovascular disease.  相似文献   

6.
White blood cell count (WBC) is unique among identified inflammatory predictors of chronic disease in that it is routinely measured in asymptomatic patients in the course of routine patient care. We led a genome-wide association analysis to identify variants associated with WBC levels in 13,923 subjects in the electronic Medical Records and Genomics (eMERGE) Network. We identified two regions of interest that were each unique to subjects of genetically determined ancestry to the African continent (AA) or to the European continent (EA). WBC varies among different ancestry groups. Despite being ancestry specific, these regions were identifiable in the combined analysis. In AA subjects, the region surrounding the Duffy antigen/chemokine receptor gene (DARC) on 1q21 exhibited significant association (p value?=?6.71e-55). These results validate the previously reported association between WBC and of the regulatory variant rs2814778 in the promoter region, which causes the Duffy negative phenotype (Fy-/-). A second missense variant (rs12075) is responsible for the two principal antigens, Fya and Fyb of the Duffy blood group system. The two variants, consisting of four alleles, act in concert to produce five antigens and subsequent phenotypes. We were able to identify the marginal and novel interaction effects of these two variants on WBC. In the EA subjects, we identified significantly associated SNPs tagging three separate genes in the 17q21 region: (1) GSDMA, (2) MED24, and (3) PSMD3. Variants in this region have been reported to be associated with WBC, neutrophil count, and inflammatory diseases including asthma and Crohn's disease.  相似文献   

7.
We performed a genome-wide association study (GWAS) of 1550 North American celiac disease cases and 3084 controls. Twelve SNPs, distributed across four regions (3p21.31, 4q27, 6q15, 6q25), were significantly associated with disease (p-value <1.0×10−7), and a further seven SNPs, across four additional regions (1q24.3, 10p15.1, 6q22.31, 17q21.32) had suggestive evidence (1.0×10−7 < p-value < 1.0×10−6). This study replicated a previous suggestive association within FRMD4B (3p14.1), confirming it as a celiac disease locus. All four regions with significant associations and two regions with suggestive results (1q24.3, 10p15.1) were known disease loci. The 6q22.31 and 10p11.23 regions were not replicated. A total of 410 SNPs distributed across the eight significant and suggestive regions were tested for association with dermatitis herpetiformis and microscopic colitis. Preliminary, suggestive statistical evidence for association with the two traits was found at chromosomes 3p21.31, 6q15, 6q25, 1q24.3 and 10p11.23, with future studies being required to validate the reported associations.  相似文献   

8.
Several genetic variants associated with platelet count and mean platelet volume (MPV) were recently reported in people of European ancestry. In this meta-analysis of 7 genome-wide association studies (GWAS) enrolling African Americans, our aim was to identify novel genetic variants associated with platelet count and MPV. For all cohorts, GWAS analysis was performed using additive models after adjusting for age, sex, and population stratification. For both platelet phenotypes, meta-analyses were conducted using inverse-variance weighted fixed-effect models. Platelet aggregation assays in whole blood were performed in the participants of the GeneSTAR cohort. Genetic variants in ten independent regions were associated with platelet count (N?=?16,388) with p<5×10(-8) of which 5 have not been associated with platelet count in previous GWAS. The novel genetic variants associated with platelet count were in the following regions (the most significant SNP, closest gene, and p-value): 6p22 (rs12526480, LRRC16A, p?=?9.1×10(-9)), 7q11 (rs13236689, CD36, p?=?2.8×10(-9)), 10q21 (rs7896518, JMJD1C, p?=?2.3×10(-12)), 11q13 (rs477895, BAD, p?=?4.9×10(-8)), and 20q13 (rs151361, SLMO2, p?=?9.4×10(-9)). Three of these loci (10q21, 11q13, and 20q13) were replicated in European Americans (N?=?14,909) and one (11q13) in Hispanic Americans (N?=?3,462). For MPV (N?=?4,531), genetic variants in 3 regions were significant at p<5×10(-8), two of which were also associated with platelet count. Previously reported regions that were also significant in this study were 6p21, 6q23, 7q22, 12q24, and 19p13 for platelet count and 7q22, 17q11, and 19p13 for MPV. The most significant SNP in 1 region was also associated with ADP-induced maximal platelet aggregation in whole blood (12q24). Thus through a meta-analysis of GWAS enrolling African Americans, we have identified 5 novel regions associated with platelet count of which 3 were replicated in other ethnic groups. In addition, we also found one region associated with platelet aggregation that may play a potential role in atherothrombosis.  相似文献   

9.
Type 2 diabetes mellitus (T2DM) is a common complex phenotype that by the year 2010 is predicted to affect 221 million people globally. In the present study we performed a genome-wide linkage scan using the allele-sharing statistic Sall implemented in Allegro and a novel two-dimensional genome-wide strategy implemented in Merloc that searches for pairwise interaction between genetic markers located on different chromosomes linked to T2DM. In addition, we used a robust score statistic from the newly developed QTL-ALL software to search for linkage to variation in adult height. The strategies were applied to a study sample consisting of 238 sib-pairs affected with T2DM from American Samoa. We did not detect any genome-wide significant susceptibility loci for T2DM. However, our two-dimensional linkage investigation detected several loci pairs of interest, including 11q22 and 21q21, 9q21 and 11q22, 1p22-p21 and 4p15, and 4p15 and 15q11-q14, with a two-loci maximum LOD score (MLS) greater than 2.00. Most detected individual loci have previously been identified as susceptibility loci for diabetes-related traits. Our two-dimensional linkage results may facilitate the selection of potential candidate genes and molecular pathways for further diabetes studies because these results, besides providing candidate loci, also demonstrate that polygenic effects may play an important role in T2DM. Linkage was detected (p value of 0.005) for variation in adult height on chromosome 9q31, which was reported previously in other populations. Our finding suggests that the 9q31 region may be a strong quantitative trait locus for adult height, which is likely to be of importance across populations.  相似文献   

10.
To identify genetic loci influencing blood lipid levels in Caribbean Hispanics, we first conducted a genome-wide linkage scan in 1,211 subjects from 100 Dominican families on five lipid quantitative traits: total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), triglycerides (TG), and LDL-C/HDL-C ratio. We then investigated the association between blood lipid levels and 21,361 single nucleotide polymorphisms (SNP) under the 1-logarithm of odds (LOD) unit down regions of linkage peaks in an independent community-based subcohort (N = 814, 42% Dominican) from the Northern Manhattan Study (NOMAS). We found significant linkage evidence for LDL-C/HDL-C on 7p12 (multipoint LOD = 3.91) and for TC on 16q23 (LOD = 3.35). In addition, we identified suggestive linkage evidence of LOD > 2.0 on 15q23 for TG, 16q23 for LDL-C, 19q12 for TC and LDL-C, and 20p12 for LDL-C. In the association analysis of the linkage peaks, we found that seven SNPs near FLJ45974 were associated with LDL-C/HDL-C with a nominal P < 3.5 × 10(-5), in addition to associations (P < 0.0001) for other lipid traits with SNPs in or near CDH13, SUMF2, TLE3, FAH, ARNT2, TSHZ3, ZNF343, RPL7AL2, and TMC3. Further studies are warranted to perform in-depth investigations of functional genetic variants in these regions.  相似文献   

11.
The genetic basis of autoantibody production is largely unknown outside of associations located in the major histocompatibility complex (MHC) human leukocyte antigen (HLA) region. The aim of this study is the discovery of new genetic associations with autoantibody positivity using genome-wide association scan single nucleotide polymorphism (SNP) data in type 1 diabetes (T1D) patients with autoantibody measurements. We measured two anti-islet autoantibodies, glutamate decarboxylase (GADA, n = 2,506), insulinoma-associated antigen 2 (IA-2A, n = 2,498), antibodies to the autoimmune thyroid (Graves') disease (AITD) autoantigen thyroid peroxidase (TPOA, n = 8,300), and antibodies against gastric parietal cells (PCA, n = 4,328) that are associated with autoimmune gastritis. Two loci passed a stringent genome-wide significance level (p<10(-10)): 1q23/FCRL3 with IA-2A and 9q34/ABO with PCA. Eleven of 52 non-MHC T1D loci showed evidence of association with at least one autoantibody at a false discovery rate of 16%: 16p11/IL27-IA-2A, 2q24/IFIH1-IA-2A and PCA, 2q32/STAT4-TPOA, 10p15/IL2RA-GADA, 6q15/BACH2-TPOA, 21q22/UBASH3A-TPOA, 1p13/PTPN22-TPOA, 2q33/CTLA4-TPOA, 4q27/IL2/TPOA, 15q14/RASGRP1/TPOA, and 12q24/SH2B3-GADA and TPOA. Analysis of the TPOA-associated loci in 2,477 cases with Graves' disease identified two new AITD loci (BACH2 and UBASH3A).  相似文献   

12.
Abnormal lipid levels are important risk factors for cardiovascular diseases. We conducted genome-wide variance component linkage analyses to search for loci influencing total cholesterol (TC), LDL, HDL and triglyceride in families residing in American Samoa and Samoa as well as in a combined sample from the two polities. We adjusted the traits for a number of environmental covariates, such as smoking, alcohol consumption, physical activity, and material lifestyle. We found suggestive univariate linkage with log of the odds (LOD) scores > 3 for LDL on 6p21-p12 (LOD 3.13) in Samoa and on 12q21-q23 (LOD 3.07) in American Samoa. Furthermore, in American Samoa on 12q21, we detected genome-wide linkage (LOD(eq) 3.38) to the bivariate trait TC-LDL. Telomeric of this region, on 12q24, we found suggestive bivariate linkage to TC-HDL (LOD(eq) 3.22) in the combined study sample. In addition, we detected suggestive univariate linkage (LOD 1.9-2.93) on chromosomes 4p-q, 6p, 7q, 9q, 11q, 12q 13q, 15q, 16p, 18q, 19p, 19q and Xq23 and suggestive bivariate linkage (LOD(eq) 2.05-2.62) on chromosomes 6p, 7q, 12p, 12q, and 19p-q. In conclusion, chromosome 6p and 12q may host promising susceptibility loci influencing lipid levels; however, the low degree of overlap between the three study samples strongly encourages further studies of the lipid-related traits.  相似文献   

13.
Childhood-onset asthma is frequently found in association with atopy. Although asthmatic children may develop IgE antibodies against variety of allergens, asthma is associated primarily with allergy to house-dust mites, molds, or other allergens. In this study, we conducted a genome-wide linkage search in 47 Japanese families (197 members) with more than two mite-sensitive atopic asthmatics (65 affected sib-pairs) using 398 markers. Multipoint linkage analysis was carried out for atopic asthma as a qualitative trait using the MAPMAKER/SIB program. We observed significant evidence for linkage with maximum lod scores (MLS) of 4.8 near the interleukin 12 B gene locus on chromosome 5q31-q33. In addition, suggestive evidence on 4q35 with MLS = 2.7 and on 13q11 with MLS = 2.4 was obtained. The other possible linkage regions included 6p22-p21.3 (MLS = 2.1), 12q21-q23 (MLS = 1.9), and 13q14.1-q14.3 (MLS = 2.0). Many of the linkage loci suggested in this study were at or close to those suggested by genome-wide studies for asthma in Caucasian populations. The present study suggests the contribution of the interleukin 12 B gene or nearby gene(s) to mite-sensitive atopic asthma and a considerable number of genetic variants common across Caucasians and Japanese populations contributing to asthma, although the relative importance of various variants may differ between the groups.  相似文献   

14.
Recent genome-wide association scans (GWAS) and meta-analysis studies on European populations have identified many genes previously implicated in lipid regulation. Validation of these loci on different global populations is important in determining their clinical relevance, particularly for development of novel drug targets for treating and preventing diabetic dyslipidemia and coronary artery disease (CAD). In an attempt to replicate GWAS findings on a non-European sample, we examined the role of six of these loci (CELSR2-PSRC1-SORT1 rs599839; CDKN2A-2B rs1333049; BUD13-ZNF259 rs964184; ZNF259 rs12286037; CETP rs3764261; APOE-C1-C4-C2 rs4420638) in our Asian Indian cohort from the Sikh Diabetes Study (SDS) comprising 3,781 individuals (2,902 from Punjab and 879 from the US). Two of the six SNPs examined showed convincing replication in these populations of Asian Indian origin. Our study confirmed a strong association of CETP rs3764261 with high-density lipoprotein cholesterol (HDL-C) (p?=?2.03×10(-26)). Our results also showed significant associations of two GWAS SNPs (rs964184 and rs12286037) from BUD13-ZNF259 near the APOA5-A4-C3-A1 genes with triglyceride (TG) levels in this Asian Indian cohort (rs964184: p?=?1.74×10(-17); rs12286037: p?=?1.58×10(-2)). We further explored 45 SNPs in a ~195 kb region within the chromosomal region 11q23.3 (encompassing the BUD13-ZNF259, APOA5-A4-C3-A1, and SIK3 genes) in 8,530 Asian Indians from the London Life Sciences Population (LOLIPOP) (UK) and SDS cohorts. Five more SNPs revealed significant associations with TG in both cohorts individually as well as in a joint meta-analysis. However, the strongest signal for TG remained with BUD13-ZNF259 (rs964184: p?=?1.06×10(-39)). Future targeted deep sequencing and functional studies should enhance our understanding of the clinical relevance of these genes in dyslipidemia and hypertriglyceridemia (HTG) and, consequently, diabetes and CAD.  相似文献   

15.
In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci.  相似文献   

16.
Efforts to identify loci underlying complex traits generally assume that most genetic variance is additive. Here, we examined the genetics of Arabidopsis thaliana root length and found that the genomic narrow-sense heritability for this trait in the examined population was statistically zero. The low amount of additive genetic variance that could be captured by the genome-wide genotypes likely explains why no associations to root length could be found using standard additive-model-based genome-wide association (GWA) approaches. However, as the broad-sense heritability for root length was significantly larger, and primarily due to epistasis, we also performed an epistatic GWA analysis to map loci contributing to the epistatic genetic variance. Four interacting pairs of loci were revealed, involving seven chromosomal loci that passed a standard multiple-testing corrected significance threshold. The genotype-phenotype maps for these pairs revealed epistasis that cancelled out the additive genetic variance, explaining why these loci were not detected in the additive GWA analysis. Small population sizes, such as in our experiment, increase the risk of identifying false epistatic interactions due to testing for associations with very large numbers of multi-marker genotypes in few phenotyped individuals. Therefore, we estimated the false-positive risk using a new statistical approach that suggested half of the associated pairs to be true positive associations. Our experimental evaluation of candidate genes within the seven associated loci suggests that this estimate is conservative; we identified functional candidate genes that affected root development in four loci that were part of three of the pairs. The statistical epistatic analyses were thus indispensable for confirming known, and identifying new, candidate genes for root length in this population of wild-collected A. thaliana accessions. We also illustrate how epistatic cancellation of the additive genetic variance explains the insignificant narrow-sense and significant broad-sense heritability by using a combination of careful statistical epistatic analyses and functional genetic experiments.  相似文献   

17.
Genetic studies of plasma TG levels have identified associations with multiple candidate loci on chromosome11q23.3, which harbors a number of genes, including BUD13, ZNF259, and APOA5-A4-C3-A1. This study aimed to examine whether these multiple candidate genes on the 11q23.3 regions exert independent effects on TG levels or whether their effects are confounded by linkage disequilibrium (LD). We performed a genome-wide association study and consequent fine-mapping analyses on TG levels in two Korean population-based cohorts: the Korea Association Resource study (n = 8,223) and the Healthy Twin study (n = 1,735). A total of 301 loci reached genome-wide significance level in pooled analysis, including 10 SNPs with weak LD (r2 < 0.06) clustered on 11q23.3: ApoA5 (rs651821, rs2075291); ZNF259 (rs964184, rs603446); BUD13 (rs11216126); Apoa4 (rs7396851); SIK3 (rs12292858); PCSK7 (rs199890178); PAFAH1B2 (rs12420127), and SIDT2 (rs2269399). When the inter-dependence between alleles was examined using conditional models, five loci on BUD13, ZNF259, and ApoA5 showed possible independent associations. A haplotype analysis using five SNPs revealed both hyper- and hypotriglyceridemic haplotypes, which are relatively common in Koreans (haplotype frequency 0.08–0.22). Our findings suggest the presence of multiple functional loci on 11q23.3, which might exert their effects on plasma TG level independently or through complex interactions between functional loci.  相似文献   

18.
The metabolic syndrome represents a cluster of cardiovascular risk factors co-occurring in the same individual. The aim of this study was to identify chromosomal regions encoding genes predisposing to the metabolic syndrome using composite factors derived from maximum likelihood-based factor analysis. Genetic data were obtained from the Quebec Family Study and included 707 subjects from 264 nuclear families. Factor analyses were performed on eight metabolic syndrome-related phenotypes including waist circumference; BMI; systolic and diastolic blood pressure; and plasma insulin, glucose, triglyceride, and high-density lipoprotein-cholesterol levels. Three factors were identified and interpreted as general metabolic syndrome, blood pressure, and blood lipids, respectively. The general metabolic syndrome factor had high factor loadings (>0.4) for all phenotypes and explained 42% of the total variance, and family membership accounted for 45.6% of the factor variance. A genome-wide linkage scan performed with this first factor revealed the existence of a quantitative trait locus on chromosome 15 (86 cM) with a logarithm of odds score of 3.15. Suggestive evidence of linkage (logarithm of odds > 1.75) was also observed on chromosomes 1p, 3p, 3q, 6q, 7p, 19q, and 21q. These quantitative trait loci may harbor genes contributing to the clustering of the metabolic syndrome-related phenotypes.  相似文献   

19.
We conducted a genome-wide linkage scan and positional association study to identify genes and variants influencing blood lipid levels among participants of the Genetic Epidemiology Network of Salt-Sensitivity(Gen Salt) study. The Gen Salt study was conducted among1906 participants from 633 Han Chinese families. Lipids were measured from overnight fasting blood samples using standard methods.Multipoint quantitative trait genome-wide linkage scans were performed on the high-density lipoprotein, low-density lipoprotein, and logtransformed triglyceride phenotypes. Using dense panels of single nucleotide polymorphisms(SNPs), single-marker and gene-based association analyses were conducted to follow-up on promising linkage signals. Additive associations between each SNP and lipid phenotypes were tested using mixed linear regression models. Gene-based analyses were performed by combining P-values from singlemarker analyses within each gene using the truncated product method(TPM). Significant associations were assessed for replication among777 Asian participants of the Multi-ethnic Study of Atherosclerosis(MESA). Bonferroni correction was used to adjust for multiple testing.In the Gen Salt study, suggestive linkage signals were identified at 2p11.2-2q12.1 [maximum multipoint LOD score(MML)=2.18 at2q11.2] and 11q24.3-11q25(MML=2.29 at 11q25) for the log-transformed triglyceride phenotype. Follow-up analyses of these two regions revealed gene-based associations of charged multivesicular body protein 3(CHMP3), ring finger protein 103(RNF103),AF4/FMR2 family, member 3(AFF3), and neurotrimin(NTM) with triglycerides(P=4 10 4, 1.00 10 5, 2.00 10 5, and1.00 10 7, respectively). Both the AFF3 and NTM triglyceride associations were replicated among MESA study participants(P=1.00 10 7and 8.00 10 5, respectively). Furthermore, NTM explained the linkage signal on chromosome 11. In conclusion, we identified novel genes associated with lipid phenotypes in linkage regions on chromosomes 2 and 11.  相似文献   

20.
In postgenomic era, searching and identification of disease genes associated with complex diseases are still one of the great challenge for dissecting human complex diseases. To improve the disease gene localization for complex diseases, a group of closely immune-mediated disease loci were overlapped on each chromosome based on previously reported genome-wide scanning data. Interestingly, five overlapping chromosomal regions (1q21, 2q33, 5q31.1-q33.1, 6p21, and 11q13) were identified by co-localizing disease loci for the following diseases: diabetes, asthma, atopic dermatitis, osteoporosis, and inflammatory bowel disease. The development of specific disease was associated with different combinations of disease loci among five overlapped chromosomal regions. Therefore, the analysis of multiple genetic loci should be considered to determine the effects of multiple genes responsible for complex diseases resulting from the influence of multiple genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号