首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Graphiumputredinis, Trichodermaharzianum and fusant were used in the present study to produce extracellular xylanases, an important industrial enzyme used in pulp and paper industry produced in a minimal medium supplemented with oat spelt xylan (1%, w/v) pH 7.0 at 27+/-2 degrees C. The enzyme was purified to homogeneity by DEAE-Cellulose and Superdex 75 FPLC column, respectively. The enzyme was found to be a monomer as determined by SDS gel electrophoresis. The optimum pH and temperature for purified G. putredinis, T. harzianum and fusant xylanases were 5.0-6.0 and 50-70 degrees C, respectively. Pretreatment of paper pulp with G. putredinis, T. harzianum and fusant xylanases decreased pulp kappa number. Xylanases particularly that of fusant at 5 IU/g pulp concentration and 1.5% pulp consistency at 60 degrees C for 18 h followed by EDED process yielded good quality paper from waste paper pulp. A significant increase in pulp brightness and improvement in various pulp properties, viz. burst capacity, thickness and bulkness of the treated pulp were observed in comparison to the conventional chemical bleaching. Easy purification and high stability of these enzymes makes it amicable for industrial applications.  相似文献   

2.
Production of extracellular xylanase from Bacillus sp. GRE7 using a bench-top bioreactor and solid-state fermentation (SSF) was attempted. SSF using wheat bran as substrate and submerged cultivation using oat-spelt xylan as substrate resulted in an enzyme productivity of 3,950 IU g−1 bran and 180 IU ml−1, respectively. The purified enzyme had an apparent molecular weight of 42 kDa and showed optimum activity at 70°C and pH 7. The enzyme was stable at 60–80°C at pH 7 and pH 5–11 at 37°C. Metal ions Mn2+ and Co2+ increased activity by twofold, while Cu2+ and Fe2+ reduced activity by fivefold as compared to the control. At 60°C and pH 6, the K m for oat-spelt xylan was 2.23 mg ml−1 and V max was 296.8 IU mg−1 protein. In the enzymatic prebleaching of eucalyptus Kraft pulp, the release of chromophores, formation of reducing sugars and brightness was higher while the Kappa number was lower than the control with increased enzyme dosage at 30% reduction of the original chlorine dioxide usage. The thermostability, alkali-tolerance, negligible presence of cellulolytic activity, ability to improve brightness and capacity to reduce chlorine dioxide usage demonstrates the high potential of the enzyme for application in the biobleaching of Kraft pulp.  相似文献   

3.
《Process Biochemistry》1999,34(5):511-517
Seven fungal strains were screened for their ability to produce cellulase-free xylanases that could be used in pretreatment of sulphite pulp prior to bleaching. The potential xylanase producers were subjected to shake flask fermentations using four different carbon sources: wheat bran, corn cobs, oat spelts xylan and bleach plant effluent. When grown on corn cobs, Aspergillus foetidus (ATCC 14916) produced significant levels of xylanase (547.4 U/ml), accompanied however by 6.6 U/ml of cellulase activity. Two other strains, Aspergillus oryzae (NRRL 1808) and Gliocladium viride (CBS 658.70), produced high yields of cellulase-free xylanase on oat spelts xylan. The crude enzymes of these two isolates were characterized with respect to pH and temperature optima and stability in order to standardize the optimum conditions for their use on pulp. Although the two xylanases differed in their abilities to remove reducing sugars from pulp, their biobleaching abilities, when assessed in hydrogen peroxide delignification of pulp, were very similar: both of them increased brightness by 1.4 points and removed 7% of hemicellulose from pulp.  相似文献   

4.
嗜热和嗜碱木聚糖酶研究进展   总被引:1,自引:0,他引:1  
木聚糖酶是降解半纤维素主要成分木聚糖的关键酶,广泛应用在食品、饲料、制浆造纸、生物脱胶等行业。特别是在造纸工业中,木聚糖酶显示出巨大的应用潜力,已成为国内外研究的热点。纸浆漂白工艺中需要酶在高温碱性条件下发挥作用。目前,主要通过筛选野生型木聚糖酶资源和对现有中性中温木聚糖酶分子改造的方法获得嗜热碱木聚糖酶。文中就嗜热嗜碱木聚糖酶的筛选、嗜热嗜碱机制研究及分子改造进展进行了综述,并对其前景进行了展望。  相似文献   

5.
High levels of xylanase activity (143.98 IU/ml) produced by the newly isolated Paenibacillus campinasensis G1-1 were detected when it was cultivated in a synthetic medium. A thermostable xylanase, designated XynG1-1, from P. campinasensis G1-1 was purified to homogeneity by Octyl-Sepharose hydrophobic-interaction chromatography, Sephadex G75 gel-filter chromatography, and Q-Sepharose ion-exchange chromatography, consecutively. By multistep purification, the specific activity of XynG1-1 was up to 1,865.5 IU/mg with a 9.1-fold purification. The molecular mass of purified XynG1-1 was about 41.3 kDa as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Sequence analysis revealed that XynG1-1 containing 377 amino acids encoded by 1,134 bp genomic sequences of P. campinasensis G1-1 shared 96% homology with XylX from Paenibacillus campinasensis BL11 and 77%~78% homology with xylanases from Bacillus sp. YA- 335 and Bacillus sp. 41M-1, respectively. The activity of XynG1-1 was stimulated by Ca2+, Ba2+, DTT, and beta- mercaptoethanol, but was inhibited by Ni2+, Fe2+, Fe3+, Zn2+, SDS, and EDTA. The purified XynG1-1 displayed a greater affinity for birchwood xylan, with an optimal temperature of 60 degrees C and an optimal pH of 7.5. The fact that XynG1-1 is cellulose-free, thermostable (stability at high temperature of 70 degrees C~80 degrees C), and active over a wide pH range (pH 5.0~9.0) suggests that the enzyme is potentially valuable for various industrial applications, especially for pulp bleaching pretreatment.  相似文献   

6.
An alkalophilic Aspergillus nidulans KK-99 produced an alkaline, thermostable xylanase (40 IU/ml) in a basal medium supplemented with wheat bran (2% w/v) and KNO3 (at 0.15% N) pH 10.0 and 37 degrees C. The partially purified xylanase was optimally active at pH 8.0 and 55 degrees C. The xylanase was stable in a broad pH range of 4.0-9.5 for 1 h at 55 degrees C, retaining more than 80% of its activity. The enzyme exhibited greater binding affinity for xylan from hardwood than from softwood. The xylanase activity was stimulated (+25%) by Na+ and Fe2+ and was strongly inhibited (maximum by 70%) by Tween-20, 40, 60, SDS, acetic anhydride, phenylmethane sulphonyl fluoride, Triton-X-100. The xylanase dose of 1.0 IU/g dry weight pulp gave optimum bleach boosting of Kraft pulp at pH 8.0 and temperature 55 degrees C for 3 h reaction time.  相似文献   

7.
A very high level of cellulase-free, thermostable xylanase has been produced from newly isolated strain of Bacillus pumilus under submerged fermentation in a basal medium supplemented with wheat bran (2%, w/v) pH 8.0 and at 37 °C. After optimization of various production parameters, an increase of nearly 13-fold in xylanase production (5407 IU/ml) was achieved. The produced xylanase is stable in neutral to alkaline pH region at 70 °C. The suitability of this xylanase for use in the bioleaching of eucalyptus Kraft pulp was investigated. A xylanase dose of 5 IU/g of oven dried pulp of 10% consistency exhibited the optimum bleach boosting of the pulp at pH 7.0 and 60 °C after 180 min of treatment. An increase of 5% in brightness along with an increase of 21% and 28% in whiteness and fluorescence respectively, whereas 18% decrease in the yellowness of the biotreated pulp was observed. Enzyme treated pulp when subjected to chemical bleaching, resulted in 20% reduction in chlorine consumption and up to 10% reduction in consumption of chlorine dioxide. Also a reduction of about 16% in kappa number and 83% in permanganate number, along with a reduction in COD value and significant improvement in various pulp properties, viz. viscosity, tensile strength, breaking length, burst factor, burstness, tear factor and tearness were observed in comparison to the conventional chemical bleaching.  相似文献   

8.
Termitomyces clypeatus produced 450 IU xylanase ml–1 in a medium containing starch-free wheat bran powder as the carbon source. Carboxymethyl cellulase (CMCase) activity in the culture filtrate was removed by keeping the filtrate at pH 10 for 60 min followed by a change to pH 6. Treatment of Kraft pulp (bamboo) with the filtrate at pH 7 decreased the kappa number from 10.5 to 5 with release of reducing groups equivalent to 0.15 mg glucose g–1 pulp.  相似文献   

9.
Mangrove fungi are vastly unexplored for enzymes with industrial application. This study aimed to assess the biocatalytic activity of mangrove fungal xylanases on recycled paper pulp. Forty-four mangrove fungal (MF) isolates were initially screened for xylanolytic activity in minimal medium with corn cob xylan as the sole carbon source. Eight MF were further cultivated under submerged fermentation for the production of crude xylanases. These crude enzymes were then characterized and tested for the pretreatment of recycled paper pulps. Results showed that 93 % of the tested MF isolates exhibited xylanolytic activity in solid medium. In submerged fermentation, salinity improved the growth of the fungal isolates but did not influence xylanase production. The crude xylanases were mostly optimally active at 50 °C and pH 7. Changes in pH had a greater effect on xylanase stability than temperature. More than half of the activity was lost at pH 9 for majority of the crude enzymes. However, two thermophilic xylanases from Fusarium sp. KAWIT-A and Aureobasidium sp. 2LIPA-M and one alkaliphilic xylanase from Phomopsis sp. MACA-J were also produced. All crude enzymes exhibited cellulase activities ranging from 4 to 21 U/ml. Enzymatic pretreatment of recycled paper pulps with 5 % consistency produced 70–650 mg of reducing sugars per gram of pulp at 50 °C after 60 min. The release of high amounts of reducing sugars showed the potential of mangrove fungal crude xylanases in the local paper and pulp industry. The diverse properties shown by the tested crude enzymes also indicate its potential applications to other enzyme-requiring industries.  相似文献   

10.
Abstract

In the present study, Isoptericola variabilis strain UD-6 isolated from alkaline hot spring of Unapdev, Maharashtra, India was assessed for its biobleaching activity by hydrolytic enzymes on rice straw pulp. Results of primary and secondary screening manifested that it was a multi-enzyme producer, competent to produce amylase, cellulase, mannanase, pectinase, and xylanase at 9.73, 4.11, 6.26, 8.42, and 6.61?IU?ml?1 in fermentation conditions, respectively. Maximum activity of all enzymes was gained at thermal temperature (50–55?°C), alkaline condition (pH 8–9), under 5?mM KCl and 5?mM NaCl salt concentration. In compatibility testing, activities of all enzymes were spectacularly reduced when they utilized with chemicals of pulp bleaching. Results of rice straw pulp bleaching was effectual when pulp was initially bleached with mannanase, pectinase, and xylanase enzymes (Es) for 90?min and then with diluted chemicals (DC) for further 90?min instead of their separate use. Treatment of rice straw pulp with Es?+?DC, enhanced the release of reducing sugars, hydrophobic compounds, and phenolic compounds, whereas Kappa number was reduced. Overall, the results of the present study indicated that pre-bleaching of pulp with hydrolytic enzymes obtained from I. variabilis strain UD-6 helps to minimize chemicals used in the bleaching process and make it more sustainable for pulp and paper industries as well as for the environment.  相似文献   

11.
Summary The production of cellulases and of xylanase by Streptomyces lividans 1326 was studied under different growth conditions. The strain grew between 18°C and 46°C and is therefore thermotolerant. Submerged cultures of the microorganism, when grown on a defined salt medium containing xylan as main carbon source, exhibited an overall cellulolytic activity as determined by the filter paper test. S. lividans produced optimal levels of extracellular -1,4-glucan-glucanohydrolase (1 IU/ml) and large amounts of -1,4-xylanxylanohydrolase (50 IU/ml) at 40°C. A better production of both enzymes was observed when xylan instead of cellulose was used as substrate.The stability of the enzyme was found to be significantly greater than those of the cellulases and xylanases produced by other streptomycetes. The optimal incubation temperatures for the enzyme assays were 55°C and 60°C for CM-cellulase and xylanase respectively and optimal pH values were found in the range of pH 6–7.  相似文献   

12.
Delignification efficacy of xylanases to facilitate the consequent chemical bleaching of Kraft pulps has been studied widely. In this work, an alkaline and thermally stable cellulase-less xylanase, derived from a xylanolytic Bacillus subtilis, has been purified by a combination of gel filtration and Q-Sepharose chromatography to its homogeneity. Molecular weight of the purified xylanase was 61 kDa by SDS–PAGE. The purified enzyme revealed an optimum assay temperature and pH of 60°C and 8.0, respectively. Xylanase was active in the pH range of 6.0–9.0 and stable up to 70°C. Divalent ions like Ca2+, Mg2+ and Zn2+ enhanced xylanase activity, whereas Hg2+, Fe2+, and Cu2+ were inhibitory to xylanase at 2 mM concentration. It showed K m and V max values of 9.5 mg/ml and 53.6 μmol/ml/min, respectively, using birchwood xylan as a substrate. Xylanase exhibited higher values of turn over number (K cat) and catalytic efficiency (K cat/K m) with birchwood xylan than oat spelt xylan. Bleach-boosting enzyme activity at 30 U/g dry pulp displayed the optimum bio-delignification of Kraft pulp resulting in 26.5% reduction in kappa number and 18.5% ISO induction in brightness at 55°C after 3 h treatment. The same treatment improved the pulp properties including tensile strength and burst index, demonstrating its potential application in pre-bleaching of Kraft pulp.  相似文献   

13.
A very high level of cellulase-free, thermostable xylanase has been produced from newly isolated strain of Bacillus pumilus under submerged fermentation in a basal medium supplemented with wheat bran (2%, w/v) pH 8.0 and at 37 °C. After optimization of various production parameters, an increase of nearly 13-fold in xylanase production (5407 IU/ml) was achieved. The produced xylanase is stable in neutral to alkaline pH region at 70 °C. The suitability of this xylanase for use in the bioleaching of eucalyptus Kraft pulp was investigated. A xylanase dose of 5 IU/g of oven dried pulp of 10% consistency exhibited the optimum bleach boosting of the pulp at pH 7.0 and 60 °C after 180 min of treatment. An increase of 5% in brightness along with an increase of 21% and 28% in whiteness and fluorescence respectively, whereas 18% decrease in the yellowness of the biotreated pulp was observed. Enzyme treated pulp when subjected to chemical bleaching, resulted in 20% reduction in chlorine consumption and up to 10% reduction in consumption of chlorine dioxide. Also a reduction of about 16% in kappa number and 83% in permanganate number, along with a reduction in COD value and significant improvement in various pulp properties, viz. viscosity, tensile strength, breaking length, burst factor, burstness, tear factor and tearness were observed in comparison to the conventional chemical bleaching.  相似文献   

14.
Bae HJ  Kim HJ  Kim YS 《Bioresource technology》2008,99(9):3513-3519
The purpose of this study was to produce recombinant xylanase in transgenic plants and to test its potential application for pulp bleaching. The xynII xylanase gene from Trichoderma reesei was inserted into the Arabidopsis genome. Many transgenic plants produced biologically active XYNII and accumulated in leaves at level of 1.4-3.2% of total soluble proteins. The bleaching ability of XYNII on Kraft pulp was demonstrated by a reduction in the kappa number and the residual lignin contents. The bleaching efficiency of transgenic plant produced XYNII was similar to commercial xylanase on unbleached Kraft pulp. The effect of xylanase treatment on Kraft pulp was also investigated by SEM. Clear physical change on the pulp fiber surface was observed and was related to the amount xylan removed and microfibrils were visible on the fiber surface. This report demonstrates the potential application of plant produced recombinant xylanase for pulp and paper bleaching.  相似文献   

15.
In the presence of xylan, Streptomyces sp. strain S38 secretes three xylanases (Xyl1, Xyl2, and Xyl3) that were purified to protein homogeneity and characterized. When used in bleach boosting tests on kraft hardwood and softwood, Xyl1, a family-11 enzyme, was more effective than Xyl2 and Xyl3 that belonged to family-10. Xyl1 was fully responsible for the biodelignification potential of the culture supernatants with a minimal effective amount of 10 IU per gram of dry pulp for both softwood and hardwood pulp. Complete conventional CEDED bleaching sequences showed that enzymatic pretreatment (20 IU/g dry pulp) could result in active chlorine savings of 8.6 and 4.9 kg/ton of dry pulp with hardwood and softwood, respectively. The purified enzymes were totally devoid of cellulase activity on CM-cellulose and their activities were optimal at about 60 degrees C and pH 6. Moreover, the V(max) value of Xyl1 at 50 degrees C measured on birchwood xylan (5,700 μmoles/min/mg prot.) was significantly higher than those of Xyl2 and Xyl3 whereas their K(m) values were similar. Their half-lives at 50 degrees C were larger than 16 h but sharply decreased at 60 degrees C where the family-11 Xyl1 was less stable (t(1/2)(60 degrees C) = 10 min) than both family-10 enzymes Xyl2 (t(1/2)(60 degrees C) = 30 min) and Xyl3 (t(1/2)(60 degrees C) = 70 min).  相似文献   

16.
Abstract: Use of hemicellulases, including xylanases, for delignification in the paper industry has been slowed down by the lack of large-scale availability of enzymes which are active at a high pH (above 8) and a high temperature (above 60°C), conditions prevailing in many bleaching processes. During the past years, acidic or neutral hemicellulases, working at temperatures below 60°C, were used in most mill experiments. The Korsäs T6 xylanase from Bacillus stearothermophilus , which is active at a pH above 9.0 and at a temperature above 65°C, was produced on a large scale in collaboration with Gist-brocades and was employed on a full scale mill trial to produce a Total Chlorine chemical-Free (TCF) pulp from softwood. The bleaching sequence used was (OO)BQQPP. where O stands for oxygen delignification. B for the enzymatic treatment, Q for the chelating agent step and P for the hydrogen peroxide step. The enzyme bleaching step was performed during a period of 4 h at 63 ± 1°C and pH 8.7 ± 0.1. The results of the mill trial show that the TCF pulp produced had a brightness of 78% ISO and, at the same time, it preserved the same strength properties as chlorine dioxide-bleached pulp. The saving of hydrogen peroxide was 20%. The results on brightness, strength and chemical saving of this first full scale trial with T6 xylanase indicate that, after optimization, a TCF bleaching sequence including an enzymatic step with a xylanase working at a high pH and a high temperature, such as T6 xylanase, can be used to produce a high-strength bleached pulp. The advantages of a high pH and a high temperature enzymatic bleaching step are discussed.  相似文献   

17.
Next to xylanases, laccases from fungi and alkali-tolerant bacteria are the most important biocatalysts that can be employed for eco-friendly biobleaching of hard and soft wood pulps in the paper industry. Laccases offer a potential alternative to conventional, environmental-polluting chlorine and chlorine-based bleaching and has no reductive effect on the final yield of pulp as compared to hemicellulases (xylanases and mannanases). In the last decade, reports on biobleaching with laccases are based on laboratory observations only. There are several critical challenges before this enzyme can be implemented for pulp bleaching at the industrial scale. This review discusses significant factors like redox potential, laccase mediator system (LMS)—synthetic or natural, pH, temperature, stability of enzyme, unwanted grafting reactions of laccase, and cost-intensive production at large scale which constitute a great hitch for the successful implementation of laccases at industrial level.  相似文献   

18.
The suitability of L-arabinose-rich plant hydrolysates as carbon sources and inducers of xylanase production in Trichoderma reesei Rut C-30 was tested. Significantly higher xylanase activities were obtained in cultures on oat husk and sugar beet pulp hydrolysates than on lactose. In batch culture with oat husk hydrolysate and lactose, the xylanase activity was about 9 times higher ( approximately 510 IU/ml) than in lactose ( approximately 60 IU/ml). Even higher xylanase activity ( approximately 630 IU/ml) was obtained when the batch cultivations were done on sugar beet pulp hydrolysate and lactose. In a fed-batch culture using oat husk hydrolysate-lactose the xylanase activity was as high as 1350 IU/ml in 4 days. The cellulase production clearly decreased when T. reesei was cultured on both hydrolysates compared to the cultivation on lactose. Moreover, the relative amounts of the xylanases I-III were similar regardless the used carbon source.  相似文献   

19.
Xanthomonas axonopodis pv. punicae strain—a potent plant pathogen that causes blight disease in pomegranate—was screened for cellulolytic and xylanolytic enzyme production. This strain produced endo-β-1,4-glucanase, filter paper lyase activity (FPA), β-glucosidase and xylanase activities. Enzyme production was optimized with respect to major nutrient sources like carbon and nitrogen. Carboxy methyl cellulose (CMC) was a better inducer for FPA, CMCase and xylanase production, while starch was found to be best for cellobiase. Soybean meal/yeast extract at 0.5 % were better nitrogen sources for both cellulolytic and xylanolytic enzyme production while cellobiase and xylanase production was higher with peptone. Surfactants had no significant effect on levels of extracellular cellulases and xylanases. A temperature of 28 °C and pH 6–8 were optimum for production of enzyme activities. Growth under optimized conditions resulted in increases in different enzyme activities of around 1.72- to 5-fold. Physico-chemical characterization of enzymes showed that they were active over broad range of pH 4–8 with an optimum at 8. Cellulolytic enzymes showed a temperature optimum at around 55 °C while xylanase had highest activity at 45 °C. Heat treatment of enzyme extract at 75 °C for 1 h showed that xylanase activity was more stable than cellulolytic activities. Xanthomonas enzyme extracts were able to act on biologically pretreated paddy straw to release reducing sugars, and the amount of reducing sugars increased with incubation time. Thus, the enzymes produced by X. axonopodis pv. punicae are more versatile and resilient with respect to their activity at different pH and temperature. These enzymes can be overproduced and find application in different industries including food, pulp and paper and biorefineries for conversion of lignocellulosic biomass.  相似文献   

20.
We have investigated the upgrading of some typical pulp and paper mill solid wastes into protein-enriched animal feed using the cellulolytic fungus Chaetomium cellulolyticum. The waste residues used were six different primary clarifier sludges and a sample of tertiary centricleaner rejects. These were obtained from mills whose modes of operation spanned the range typically in present-day usage: groundwood, sulfite, semichemical, Kraft, and thermomechanical pulping, with and without bleaching. Crude protein production from the solid waste residues is compared to that obtainable from fermentation of untreated or caustic-pretreated sawdusts. Some of these waste residues, especially the Kraft pulp mill rejects, appear to be promising sources of substrate for single-cell protein production. In these preliminary findings, up to 28% dry weight crude protein content of the product has been obtained at specific growth rates of up to 0.12hr?1 on direct utilization of the wastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号