首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 476 毫秒
1.
28SrRNA的α-sarcin结构域直接参与核糖体催化的蛋白质合成反应,已经证明天花粉蛋白是一种RNAN-糖苷酶,一种测定RNAN-糖苷酶活力的新方法也已初步建立。天花粉蛋白能使超螺旋DNA解旋并断裂为缺口环状和线状DNA.并已发现其它RNAN-糖苷酶也具有这一核酸内切活性。天花粉蛋白对28SrRNA,超螺旋DNA和艾滋病毒(HIV-1)RNA三种底物可能有相同的分子作用机制.  相似文献   

2.
天花粉毒蛋白使核糖体失活的分子机制是它有RNAN-糖苷酶的作用。从樟树种子中纯化的两种新的核糖体失活蛋白(RIP)——辛纳毒蛋白和克木毒蛋白也都具有RNAN-糖苷酶和依赖超螺旋结构的核酸内切酶活性。辛纳毒蛋白还有杀虫活性;克木毒蛋白还有超氧化物歧化酶活性。被RNAN-糖苷酶失活的核糖体用硼氢化钠还原或氨基酸加成反应可部分地复活,这表明失活的核糖体RNA上产生的一个活泼醛基对其失活起着重要作用。工作中建立了荧光标记在凝胶上测定小分子RNA序列和定性测定糖蛋白的两种新方法。  相似文献   

3.
核糖体失活蛋白及核糖体拓扑结构的研究进展(续完)李向东刘望夷(中国科学院上海生物化学研究所,上海200031)关键词核糖体失活蛋白核糖体拓扑结构RNAN-糖苷酶2.核糖体拓扑结构的研究核糖体是由数十种生物大分子(RNA和蛋白质)构成的。早期普遍接受的...  相似文献   

4.
蓖麻毒素—A链结构功能研究进展   总被引:1,自引:0,他引:1  
蓖麻毒素(ricin)是一种核糖体失活蛋白,是构建免疫毒素的一个重要成分,本介绍近年来ricin-A链的理化性质和制备,结构功能关系及其N-苷酶作用机制方面的研究进展.  相似文献   

5.
核糖体RNA拓扑学与RNA N-糖苷酶研究进展(上)   总被引:4,自引:0,他引:4  
核糖体RNA拓扑学的研究对阐明核糖体RNA(rRNA)在蛋白质生物合成中的作用具有重要的意义.RNA N-糖苷酶是一类核糖体失活蛋白.它只水解rRNA特定位置上一个腺苷酸的糖苷键,释放一个腺嘌呤碱基,使核糖体失活.Ricin A链是研究得最早和最详细的RNA N-糖苷酶,迄今已发现有二十五种核糖体失活蛋白具有RNA N-糖苷酶活性.RNA N-糖苷酶作用于28S rRNA的α-sarcin结构域,改变核糖体的构象而使其失活.  相似文献   

6.
栝楼种子中一种新型小分子核糖体失活蛋白——S—tric …   总被引:3,自引:0,他引:3  
通过硫酸铵分级沉淀、CM-52阳离子交换层析、Sephacryl S-100凝胶过滤和FPLC Mono-S离子交换层析等步骤,从栝楼种子中分离到一种核糖体失活蛋白--S-trichokirin,经15%SDS-PAGE测定分子量为8kD左右,13.5%聚丙烯酰胺凝胶酸性电泳结果显示其等电点在pH9.5左右。通过对大鼠肝核糖体作用的研究,表明S-tri-chokirin属于RNA N-糖苷酶催化型  相似文献   

7.
核糖体失活蛋白的结构功能与分布   总被引:7,自引:0,他引:7  
核糖体失活蛋白是一类在植物中较广泛存在的毒蛋白。植物核糖体失活蛋白具有RNAN-糖苷酶活力,可作用于核糖体RNA,使核糖体失去蛋白质合成的功能。根据一级结构,核糖体失活蛋白可分为两种类型。Ⅰ型核糖体失活蛋白由一条链组成,分子量在25—30 kDa之间。Ⅱ型核糖体失活蛋白由两条以二硫键相连的链(A、B链)组成,分子量在60 kDa左右。B链可以与细胞表面含半乳糖的受体结合,有助于A链进入细胞,作用于核糖体。目前至少已从9个科31种植物中分离纯化了Ⅰ型RIP。Ⅱ型RIP较少,仅在6科8种植物中发现。除了具有RNA N-糖苷酶活性,还发现一些核糖体失活蛋白可以切割超螺旋双链DNA,产生缺口环状和线状DNA。此外,一种Ⅰ型RIP,克木毒蛋白还具有超氧化物歧化酶活性。  相似文献   

8.
用HPLC和薄层层析等方法,分析了不同反应时间天花粉蛋白(TCS)和5'-AMP的反应产物成分,结果显示在0.5h内生成腺嘌呤核苷,随着反应时间的增加,同时有腺嘌呤核苷和腺嘌呤生成,48h后则反应产物主要是腺嘌呤,α-苦瓜子蛋白、肥皂草蛋白、丝瓜素毒蛋白和多花白树毒蛋白等单链核糖体失活蛋白也有类似结果,紫外差光谱研究结果也表明TCS与5'-AMP相互作用显示出明显的时间过程,提示单链核糖体失活蛋白除了N-糖苷酶活性外,还具有5'-AMP磷酸酯酶活性.  相似文献   

9.
核糖体失活蛋白及其在植物抗真菌病基因工程中的应用   总被引:12,自引:0,他引:12  
真菌病是农作物减产的主要原因之一。而植物界大量存在着具有离体抑制真菌生长增殖能力的蛋白质,核糖体失活蛋白(RIP,ribosome inactivating protein)就是其一。它能特异地水解核糖体RNA 3′-端茎环结构的腺嘌呤残基而导致核糖体失活,进而抑制蛋白合成。但它却不使自身的核糖体失活,只对其它物种核糖体显示高度特异性,这显然具有防止外来病原体侵染的功能。利用基因工程技术,使其在一些经济作物中高效表达,筛选具有抗性的转基因植株,这正日益成为植物真菌病防治的新途径。它克服了常规育种周期长,抗性种质缺乏的弊端,更避免了施用农药带来的环境污染等问题,其应用前景甚为广阔。围绕其在真菌病基因工程中的应用,本文对核糖体失活蛋白在植物体中的分布、分类、生化、结构、功能特性、作用机制以及应用前景等作简要、全面的  相似文献   

10.
植物毒蛋白对真核细胞蛋白质生物合成的抑制主要是使核糖体失活,所以这类毒蛋白又称核糖体失活蛋白。其作用机制有两种类型:(1)核酸水解酶型(如α-Sarcin);(2)RNA N-糖苷酶型。这种酶的作用机制是近两年来才搞清楚的。它专一水解真核细胞核糖体28s RNA的第4324位腺苷酸的糖苷键,释放一个  相似文献   

11.
12.
核糖体失活蛋白是一类毒蛋白, 主要存在于植物当中, 在真菌和细菌中也有发现。其共同特点是具有N-糖苷酶活性, 能水解生物核糖体大亚基rRNA颈环结构上特定位点的腺嘌呤, 使核糖体失活, 从而抑制了蛋白质合成。本文对核糖体失活蛋白的主要性质、应用以及国内外有关这类蛋白的研究进展加以概述。  相似文献   

13.
核糖体单链失活蛋白是一类广泛分布于植物中的蛋白质,它能使真核细胞核糖体60S亚基失活。本文报道了一些核糖体单链失活蛋白的制备、纯化以及在兔网织红细胞裂解液中对蛋白质生物合成的抑制活性及它们对完整细胞的毒性。其中多数的核糖体单链失活蛋白是首次被分离纯化并对其毒性进行研究的。  相似文献   

14.
Xu YZ  Liu WY 《Biological chemistry》2000,381(2):113-119
Effects of the active aldehyde group of ribose C1' at position 4324 of rat 28S rRNA, in the inactivated ribosome generated by RNA N-glycosidases (trichosanthin, A-chain of cinnamomin and ricin), on peptide elongation have been studied. The aldehyde group inhibits the activities of eEF1A-dependent aminoacyl-tRNA binding to the inactivated ribosome and eEF1A-dependent GTPase, but increases eEF2-dependent activity. At a high concentration of RNA N-glycosidase, the generated aldehyde group also inhibits aminoacyl-tRNA binding to the inactivated ribosome in the absence of elongation factor and translocation activity. When the aldehyde group is reduced into a hydroxyl group by sodium borohydride or blocked with an amino acid through nucleophilic addition, the activities of eEF1A-dependent aminoacyl-tRNA binding and eEF1A-dependent GTPase of the inactivated ribosome are partially restored, but the altered activities of eEF2-dependent GTPase, translocation and aminoacyl-tRNA binding in the absence of elongation factor are not normalized. Thus, reduction or blockage of the aldehyde group with sodium borohydride or amino acids might change the conformation of the S/R domain in rat 28S ribosomal RNA to meet the requirement for eEF1A-dependent reactions, but not eEF2-involved reactions.  相似文献   

15.
W P Fong  R N Wong  T T Go  H W Yeung 《Life sciences》1991,49(25):1859-1869
Ribosome-inactivating proteins (RIPs) are a group of proteins that inhibit protein synthesis in eucaryotic cells. While the biological effects have been well characterized, the underlying enzymatic mechanisms have not been elucidated until recently. Two different mechanisms have been identified. Plant and bacterial RIPs act as N-glycosidases. They cleave a single N-glycosidic bond between adenine and ribose at a specific nucleotide A-4324 of the 28S rRNA of the 60S ribosomal subunit. On the other hand, the fungal RIPs act as ribonucleases and cleave a single phosphodiester bond between G-4325 and A-4326 of the same rRNA, just one nucleotide away from the site of action of plant/bacterial RIPs. Other protein synthesis inhibitory proteins act by their ADP-ribosyltransferase activity which modify and thus inactivate elongation factor-2. Recently, some toxins have been shown to possess deoxyribonuclease activity which may also account for their toxicity.  相似文献   

16.
We have developed a convenient procedure to measure the activity of Ricin A-chain and other enzymes with RNA N-glycosidase activity. The method is based on the use of a tritiated oligoribonucleotide as a substrate. The enzymatic activity is directly determined by measuring the release of adenine from the substrate. This method should prove useful in the study of the molecular mechanism of action of Ricin A and other RNA N-glycosidases.  相似文献   

17.
18.
We have surveyed 14 different toxic and nontoxic ribosome-inactivating proteins from plants for the ability to act on the RNA of the eucaryotic 60 S ribosomal subunit. All of these proteins act to introduce a specific modification into 26-28 S RNA which renders the RNA sensitive to cleavage by aniline. Sequence analysis of the 5'-termini of the fragments produced by ricin and saporin following aniline cleavage indicate that both proteins possess identical specificity. Our observations support the conclusion of Endo and Tsurugi (J. Biol. Chem. 262, 8128-8130, 1987) that ricin is a specific N-glycosidase and we have located the site of this cleavage by direct sequence analysis. Our results further suggest that all plant ribosome-inactivating proteins function as specific N-glycosidases with the same specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号