首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A cDNA encoding -amino acid oxidase (DAO;EC 1.4.3.3) has been isolated from a BALB/c mouse kidney cDNA library by hybridization with the cDNA for the porcine enzyme. Analysis of the nucleotide (nt) sequence of the clone revealed that it has a 1647-nt sequence with a 5′-terminal untranslated region of 68 nt that encodes 345 amino acids (aa), and a 3′-terminal untranslated region of 544 nt that contains the polyadenylation signal sequence ATTAAA. The deduced aa sequence showed 77 and 78% aa identity with the porcine and human enzymes, respectively. Two catalytically important aa residues, Tyr228 and His307, of the porcine enzyme, were both conserved in these three species. RNA blot hybridization analysis indicated that a DAO mRNA, of 2 kb, exists in mouse kidney and brain, but not liver. Synthesis of a functional mouse enzyme in Escherichia coli was achieved through the use of a vector constructed to insert the coding sequence of the mouse DAO cDNA downstream from the tac promoter of plasmid pKK223-3, which was designed so as to contain the lac repressor gene inducible by isopropyl-β- -thiogalactopyranoside. Immunoblot analysis confirmed the synthesis and induction of the mouse DAO protein, and the molecular size of the recombinant mouse DAO was found to be identical to that of the mouse kidney enzyme. Moreover, the maximum activity of the mouse recombinant DAO was estimated to be comparable with that of the porcine DAO synthesized in E. coli cells.  相似文献   

2.
A genomic fragment encoding αAPC and βAPC (i.e., α and β units of the allophycocyanin, APC) from Anacystis nidulans UTEX 625 was cloned and sequenced. This fragment, containing a non-coding sequence of 56 nucleotides in between, was then subcloned into the expression vector pMal-c2 downstream from and in frame with the malE gene of E. coli encoding MBP (maltose binding protein). The fusion protein was purified by amylose affinity chromatography and cleaved by coagulation factor Xa. αAPC and βAPC were then separated from MBP and MBP fusion proteins, respectively, and concentrated by membrane centrifugation. The study provides a method to produce recombinant allophycocyanin subunits for biomedical and biotechnological applications.  相似文献   

3.
Phosphoinositide-specific phospholipase C (PLC) control the levels of their substrate phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and its hydrolysis products diacylglycerol (DAG) and Ins(1,4,5)P3, second messengers key to growth control and cell movement. The former is modulated by breakdown of plasma membrane and nuclear phosphoinositides, while the latter is mediated by phosphoinositide-driven remodeling of the actin cytoskeleton. The roles of PLC in the etiology and progression of breast carcinoma, however, are poorly understood. Previous studies reported a correlation between PLCβ2 expression and breast tumor grade, making PLCβ2 a potential marker for clinical outcome (Bertagnolo et al., 2006). While over-expression of PLCβ2 is not sufficient to induce transformation of normal breast epithelial cells, it appears to play a role in promoting cell migration (Bertagnolo et al., 2007).Here we examined the expression of this and other PLC mRNA (β1–β4, δ1, δ3 and δ4, γ1 and γ2) in normal breast epithelial lines, MCF-10A, and compared that pattern to breast tumor lines MDA-MB-231 and to T47D, using real-time relative-quantification PCR. Our results show that PLCγ1, γ2 and δ1 and δ3 are more highly expressed in the transformed cell lines compared to MCF-10A when normalized to mRNA encoding various house keeping proteins; whereas PLCβ2 mRNA levels were considerably lower than other PLC subtypes, including PLCβ1 in the metastatic lines. Examination of PLC mRNA levels from normal and cancerous human breast tissue showed a similar pattern of expression, however, when staging or tumor size was considered, PLCδ1 and δ3 expression were positively correlated.To test whether PLCδ1 or δ3 played any role in tumor cell proliferation or cell migration, we transfected cells with siRNA specifically targeting these isoforms. RNAi mediated knockdown of either PLC isoform, reduced proliferation of the MDA-MB-231 cells. Morphological changes including cell rounding, and surface blebbing and nuclear fragmentation were observed. These changes were accompanied by reductions in cell migration activities. On the other hand, PLCδ1 knockdown failed to cause comparable morphological changes in the normal MCF-10A line, but did reduce cell proliferation and migration. Taken together, these data are consistent with the idea that PLCδ1 and δ3 isoforms support the growth and migration of normal and neoplastic mammary epithelial cells in vitro.  相似文献   

4.
Rac1, which is associated with cytoskeletal pathways, can activate phospholipase Cβ2 (PLCβ2) to increase intracellular Ca2+ levels. This increased Ca2+ can in turn activate the very robust PLCδ1 to synergize Ca2+ signals. We have previously found that PLCβ2 will bind to and inhibit PLCδ1 in solution by an unknown mechanism and that PLCβ2·PLCδ1 complexes can be disrupted by Gβγ subunits. However, because the major populations of PLCβ2 and PLCδ1 are cytosolic, their regulation by Gβγ subunits is not clear. Here, we have found that the pleckstrin homology (PH) domains of PLCβ2 and PLCβ3 are the regions that result in PLCδ1 binding and inhibition. In cells, PLCβ2·PLCδ1 form complexes as seen by Förster resonance energy transfer and co-immunoprecipitation, and microinjection of PHβ2 dissociates the complex. Using PHβ2 as a tool to assess the contribution of PLCβ inhibition of PLCδ1 to Ca2+ release, we found that, although PHβ2 only results in a 25% inhibition of PLCδ1 in solution, in cells the presence of PHβ2 appears to eliminates Ca2+ release suggesting a large threshold effect. We found that the small plasma membrane population of PLCβ2·PLCδ1 is disrupted by activation of heterotrimeric G proteins, and that the major cytosolic population of the complexes are disrupted by Rac1 activation. Thus, the activity of PLCδ1 is controlled by the amount of bound PLCβ2 that changes with displacement of the enzyme by heterotrimeric or small G proteins. Through PLCβ2, PLCδ1 activation is linked to surface receptors as well as signals that mediate cytoskeletal pathways.  相似文献   

5.
The α-galactosidase gene of Streptomyces coelicolor A3(2) was cloned, expressed in Escherichia coli and characterized. It consisted of 1497 nucleotides encoding a protein of 499 amino acids with a predicted molecular weight of 57,385. The observed homology between the deduced amino acid sequences of the enzyme and α-galactosidase from Thermus thermophilus was over 40%. The α-galactosidase gene was assigned to family 36 of the glycosyl hydrolases. The enzyme purified from recombinant E. coli showed optimal activity at 40 °C and pH 7. The enzyme hydrolyzed p-nitrophenyl-α-D-galactopyroside, raffinose, stachyose but not melibiose and galactomanno-oligosaccharides, indicating that this enzyme recognizes not only the galactose moiety but also other substrates.  相似文献   

6.
A full length cDNA encoding glutamate dehydrogenase was cloned from Teladorsagia circumcincta (TcGDH). The TcGDH cDNA (1614 bp) encoded a 538 amino acid protein. The predicted amino acid sequence showed 96% and 93% similarity with Haemonchus contortus and Caenorhabditis elegans GDH, respectively. A soluble N-terminal 6xHis-tagged GDH protein was expressed in the recombinant Escherichia coli strain BL21 (DE3) pGroESL, purified and characterised. The recombinant TcGDH had similar kinetic properties to those of the enzyme in homogenates of T. circumcincta, including greater activity in the aminating than deaminating reaction. Addition of 1 mM ADP and ATP increased activity about 3-fold in the deaminating reaction, but had no effect in the reverse direction. TcGDH was a dual co-factor enzyme that operated both with NAD+ and NADP+, GDH activity was greater in the deaminating reaction with NADP+ as co-factor and more with NADH in the aminating reaction.  相似文献   

7.
Liu Z  Li X  Chi Z  Wang L  Li J  Wang X 《Antonie van Leeuwenhoek》2008,94(2):245-255
The extracellular lipase structural gene was isolated from cDNA of Aureobasidium pullulans HN2-3 by using SMARTTM RACE cDNA amplification kit. The gene had an open reading frame of 1245 bp long encoding a lipase. The coding region of the gene was interrupted by only one intron (55 bp). It encodes 414 amino acid residues of a protein with a putative signal peptide of 26 amino acids. The protein sequence deduced from the extracellular lipase structural gene contained the lipase consensus sequence (G-X-S-X-G) and three conserved putative N-glycosylation sites. According to the phylogenetic tree of the lipases, the lipase from A. pullulans was closely related to that from Aspergillus fumigatus (XP_750543) and Neosartorya fischeri (XP_001257768) and the identities were 50% and 52%, respectively. The mature peptide encoding cDNA was subcloned into pET-24a (+) expression vector. The recombinant plasmid was expressed in Escherichia coli BL21(DE3). The expressed fusion protein was analyzed by SDS-PAGE and western blotting and a specific band with molecular mass of about 47 kDa was found. Enzyme activity assay verified the recombinant protein as a lipase. A maximum activity of 0.96 U/mg was obtained from cellular extract of E. coli BL21(DE3) harboring pET-24a(+)LIP1. Optimal pH and temperature of the crude recombinant lipase were 8.0 and 35 °C, respectively and the crude recombinant lipase had the highest hydrolytic activity towards peanut oil.  相似文献   

8.
A venom-specific cDNA encoding for a thrombin-like enzyme designated as mucrosobin has been cloned and sequenced from the cDNA library of the venomous gland of Trimeresurus mucrosquamatus. The full-length cDNA of mucrosobin was assembled by oligonucleotide screening and 5′-rapid amplification of cDNA ends. The amino acid sequence deduced from the cDNA consists of 257 amino acid residues with a putative signal peptide of 24 residues. It is highly homologous to the other thrombin-like enzymes (batroxobin, mucofirase, and calobin), suggesting that it is a serine proteinase with a conserved catalytic triad of His41, Asp84 and Ser179 in the deduced form of mucrosobin protein. Northern blot analysis revealed that the mucrosobin gene encodes an mRNA of 1.5 kb and suggested a tissue-specific expression in the venomous gland. In an effort to study the biological property of mocrosobin, we have expressed the 28-kDa protein as inclusion bodies in Escherichia coli. For analyzing enzymatic activity, the inclusion bodies were solubilized and the recombinant protein was refolded with a two-step dialysis protocol. The refolded recombinant protein exhibited a specific β-fibrinogenolytic activity. This study offers a possibility of using genetic engineering to acquirie a functional snake venom protein with therapeutic potential.  相似文献   

9.
10.
Although inositol trisphosphate (IP3) functions in releasing Ca2+ in eggs at fertilization, it is not known how fertilization activates the phospholipase C that produces IP3. To distinguish between a role for PLCγ, which is activated when its two src homology-2 (SH2) domains bind to an activated tyrosine kinase, and PLCβ, which is activated by a G protein, we injected starfish eggs with a PLCγ SH2 domain fusion protein that inhibits activation of PLCγ. In these eggs, Ca2+ release at fertilization was delayed, or with a high concentration of protein and a low concentration of sperm, completely inhibited. The PLCγSH2 protein is a specific inhibitor of PLCγ in the egg, since it did not inhibit PLCβ activation of Ca2+ release initiated by the serotonin 2c receptor, or activation of Ca2+ release by IP3 injection. Furthermore, injection of a PLCγ SH2 domain protein mutated at its phosphotyrosine binding site, or the SH2 domains of another protein (the phosphatase SHP2), did not inhibit Ca2+ release at fertilization. These results indicate that during fertilization of starfish eggs, activation of phospholipase Cγ by an SH2 domain-mediated process stimulates the production of IP3 that causes intracellular Ca2+ release.  相似文献   

11.
Succinate fermentation was investigated in Escherichia coli strains overexpressing cyanobacterium Anabaena sp. 7120 ecaA gene encoding carbonic anhydrase (CA). In strain BL21 (DE3) bearing ecaA, the activity of CA was 21.8 U mg−1 protein, whereas non-detectable CA activity was observed in the control strain. Meanwhile, the activity of phosphoenolpyruvate carboxylase (PEPC) increased from 0.2 U mg−1 protein to 1.13 U mg−1 protein. The recombinant bearing ecaA reached a succinate yield of 0.39 mol mol−1 glucose at the end of the fermentation. It was 2.1-fold higher than that of control strain which was just 0.19 mol mol−1 glucose. EcaA gene was also introduced into E. coli DC1515, which was deficient in glucose phosphotransferase, lactate dehydrogenase and pyruvate:formate lyase. Succinate yield can be further increased to 1.26 mol mol−1 glucose. It could be concluded that the enhancement of the supply of HCO3 in vivo by ecaA overexpression is an effective strategy for the improvement of succinate production in E. coli.  相似文献   

12.
A digestive β-glucosidase cDNA was cloned from the silkworm, Bombyx mori. The B. mori β-glucosidase cDNA contains an open reading frame of 1473 bp encoding 491 amino acid residues. The B. mori β-glucosidase possesses the amino acid residues involved in catalysis and substrate binding conserved in glycosyl hydrolase family 1. Southern blot analysis of genomic DNA suggested the B. mori β-glucosidase to be a single gene. Northern blot analysis of B. mori β-glucosidase gene confirmed larval midgut-specific expression. The B. mori β-glucosidase mRNA expression in larval midgut was detectable only during feeding period, whereas its expression was downregulated during starvation. The B. mori β-glucosidase cDNA was expressed as a 57-kDa polypeptide in baculovirus-infected insect Sf9 cells, and the recombinant β-glucosidase was active on cellobiose and lactose, but not active on salicin, indicating that the B. mori β-glucosidase possesses the characteristics of the Class 2 enzyme. The enzyme activity of the purified recombinant β-glucosidase expressed in baculovirus-infected insect cells was approximately 665 U per μg of recombinant B. mori β-glucosidase. The purified recombinant B. mori β-glucosidase showed the highest activity at 35 °C and pH 6.0, and were stable at 50 °C at least for 10 min. Treatment of recombinant virus-infected Sf9 cells with tunicamycin, a specific inhibitor of N-glycosylation, revealed that the recombinant B. mori β-glucosidase is N-glycosylated, but the carbohydrate moieties are not essential for enzyme activity.  相似文献   

13.
Sperm-specific phospholipase C-ζ (PLCζ) is widely considered to be the physiological stimulus that triggers intracellular Ca2+ oscillations and egg activation during mammalian fertilization. Although PLCζ is structurally similar to PLCδ1, it lacks a pleckstrin homology domain, and it remains unclear how PLCζ targets its phosphatidylinositol 4,5-bisphosphate (PIP2) membrane substrate. Recently, the PLCδ1 EF-hand domain was shown to bind to anionic phospholipids through a number of cationic residues, suggesting a potential mechanism for how PLCs might interact with their target membranes. Those critical cationic EF-hand residues in PLCδ1 are notably conserved in PLCζ. We investigated the potential role of these conserved cationic residues in PLCζ by generating a series of mutants that sequentially neutralized three positively charged residues (Lys-49, Lys-53, and Arg-57) within the mouse PLCζ EF-hand domain. Microinjection of the PLCζ EF-hand mutants into mouse eggs enabled their Ca2+ oscillation inducing activities to be compared with wild-type PLCζ. Furthermore, the mutant proteins were purified, and the in vitro PIP2 hydrolysis and binding properties were monitored. Our analysis suggests that PLCζ binds significantly to PIP2, but not to phosphatidic acid or phosphatidylserine, and that sequential reduction of the net positive charge within the first EF-hand domain of PLCζ significantly alters in vivo Ca2+ oscillation inducing activity and in vitro interaction with PIP2 without affecting its Ca2+ sensitivity. Our findings are consistent with theoretical predictions provided by a mathematical model that links oocyte Ca2+ frequency and the binding ability of different PLCζ mutants to PIP2. Moreover, a PLCζ mutant with mutations in the cationic residues within the first EF-hand domain and the XY linker region dramatically reduces the binding of PLCζ to PIP2, leading to complete abolishment of its Ca2+ oscillation inducing activity.  相似文献   

14.
Recent evidence has revived interest in the idea that phosphoinositides (PIs) may play a role in signal transduction in mammalian olfactory receptor neurons (ORNs). To provide direct evidence that odorants indeed activate PI signaling in ORNs, we used adenoviral vectors carrying two different fluorescently tagged probes, the pleckstrin homology (PH) domains of phospholipase Cδ1 (PLCδ1) and the general receptor of phosphoinositides (GRP1), to monitor PI activity in the dendritic knobs of ORNs in vivo. Odorants mobilized PI(4,5)P2/IP3 and PI(3,4,5)P3, the substrates and products of PLC and PI3K. We then measured odorant activation of PLC and PI3K in olfactory ciliary-enriched membranes in vitro using a phospholipid overlay assay and ELISAs. Odorants activated both PLC and PI3K in the olfactory cilia within 2 s of odorant stimulation. Odorant-dependent activation of PLC and PI3K in the olfactory epithelium could be blocked by enzyme-specific inhibitors. Odorants activated PLC and PI3K with partially overlapping specificity. These results provide direct evidence that odorants indeed activate PI signaling in mammalian ORNs in a manner that is consistent with the idea that PI signaling plays a role in olfactory transduction.  相似文献   

15.
It has been demonstrated that the phospholipase C-γ (PLCγ) molecule possesses within it a phospholipase C inhibitor (PCI) region and that synthetic peptides based on the sequence of the PCI region suppress the enzymatic activity of PLC isoforms [Y. Homma and T. Takenawa (1992) J. Biol. Chem.267, 21884–218891. For the present study, the applicability of these peptides as inhibitors of PLC activity In plasma membranes was examined. Synthetic peptides, the original PCI peptide (24-mer) and a minimum octamer (YRKMRLRY), inhibit Ca2+-inducible PLC activation in digitonine-permeabilized cells, while a dodecamer sequence within the PCI region (SYYEKHALYRKM) does not. Similar results were obtained in both agonist- and GTP-binding protein-inducible PLC activation systems using purified plasma membranes. The inhibitory effect described here appears to reflect the inhibitory potency of the peptides against purified PLC isoforms. Therefore, these inhibitor peptides could provide an excellent tool for analyzing protein–protein interactions and resulting PLC activation.  相似文献   

16.
Microinjection of a truncated form of the c-kit tyrosine kinase present in mouse spermatozoa (tr-kit) activates mouse eggs parthenogenetically, and tr-kit– induced egg activation is inhibited by preincubation with an inhibitor of phospholipase C (PLC) (Sette, C., A. Bevilacqua, A. Bianchini, F. Mangia, R. Geremia, and P. Rossi. 1997. Development [Camb.]. 124:2267–2274). Co-injection of glutathione-S-transferase (GST) fusion proteins containing the src-homology (SH) domains of the γ1 isoform of PLC (PLCγ1) competitively inhibits tr-kit– induced egg activation. A GST fusion protein containing the SH3 domain of PLCγ1 inhibits egg activation as efficiently as the whole SH region, while a GST fusion protein containing the two SH2 domains is much less effective. A GST fusion protein containing the SH3 domain of the Grb2 adaptor protein does not inhibit tr-kit–induced egg activation, showing that the effect of the SH3 domain of PLCγ1 is specific. Tr-kit–induced egg activation is also suppressed by co-injection of antibodies raised against the PLCγ1 SH domains, but not against the PLCγ1 COOH-terminal region. In transfected COS cells, coexpression of PLCγ1 and tr-kit increases diacylglycerol and inositol phosphate production, and the phosphotyrosine content of PLCγ1 with respect to cells expressing PLCγ1 alone. These data indicate that tr-kit activates PLCγ1, and that the SH3 domain of PLCγ1 is essential for tr-kit–induced egg activation.  相似文献   

17.
For the heterologous expression of the msp2 gene from the edible mushroom Marasmius scorodonius in Escherichia coli the cDNA encoding the extracellular Msp2 peroxidase was cloned into the pBAD III expression plasmid. Expression of the protein with or without signal peptide was investigated in E. coli strains TOP10 and LMG194. Different PCR products were amplified for expression of the native target protein or a protein with a signal peptide. Omitting the native stop codon and adding six His-residues resulted in a fusion protein amenable to immune detection and purification by immobilised metal affinity chromatography. In E. coli the recombinant protein was produced in high yield as insoluble inclusion bodies. The influence of different parameters on MsP2 refolding was investigated. Active enzyme was obtained by glutathione-mediated oxidation in a medium containing urea, Ca2+, and hemin.  相似文献   

18.
A novel recombinant expression system in Escherichia coli was developed using conger eel galectin, namely, congerin II, as an affinity tag. This system was applied for the functional expression of myotoxic lysine-49-phospholipase A2 ([Lys49]PLA2), termed BPII and obtained from Protobothrops flavoviridis (Pf) venom. Recombinant Pf BPII fused with a congerin tag has been successfully expressed as a soluble fraction and showed better quantitative yield when folded correctly. The solubility of the recombinant congerin II-tagged BPII increased up to >90% in E. coli strain JM109 when coexpressed with the molecular chaperones GroEL, GroES, and trigger factor (Tf). The tag protein was cleaved by digestion with restriction protease, such as α-thrombin or Microbacterium liquefaciens protease (MLP), to obtain completely active recombinant BPII. Thus, the congerin-tagged fusion systems containing the cleavage recognition site for α-thrombin or MLP were demonstrated to be highly efficient and useful for producing proteins of desired solubility and activity.  相似文献   

19.
20.
The BhMIR32 xyn11A gene, encoding an extracellular endoxylanase of potential interest in bio-bleaching applications, was amplified from Bacillus halodurans MIR32 genomic DNA. The protein encoded is an endo-1,4-β-xylanase belonging to family 11 of glycosyl hydrolases. Its nucleotide sequence was analysed and the mature peptide was subcloned into pET22b(+) expression vector. The enzyme was over-expressed in a high density Escherichia coli culture as a soluble and active protein, and purified in a single step by immobilised metal ion affinity chromatography with a specific activity of 3073 IU mg−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号