首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
桔小实蝇线粒体基因组全序列及其分析   总被引:1,自引:0,他引:1  
桔小实蝇Bactrocera dorsalis线粒体基因组全序列对研究实蝇分子系统进化具有重要意义。本研究通过DNA测序和克隆技术,对桔小实蝇mtDNA全序列进行了测定和分析。结果表明:桔小实蝇线粒体基因组全长15 915 bp(GenBank序列号: DQ845759)。基因组碱基组成为39.3%A,16.2%C,10.2%G,34.3%T,由13个蛋白编码基因、22个tRNA基因、2个rRNA基因以及一个非编码的控制区域(A+T-rich区)组成。7个蛋白编码基因和13个tRNA基因从J链编码,其余6个蛋白编码基因和9个tRNA基因从N链编码。位于J链上的蛋白编码基因具有近似的A、T含量,而位于N链上的蛋白编码基因的A的含量明显高于T的含量。以mtDNA COⅠ基因为例,比较了桔小实蝇与其他14种实蝇的亲缘关系,结果显示其与同亚属(果实蝇亚属Bactrocera)内的其他近缘种相互间的同源性很高。  相似文献   

2.
3.
Although it is acknowledged that genetic variation contributes to individual differences in thermotolerance, the specific genes and pathways involved and how they are modulated by the environment remain poorly understood. We link natural variation in the thermotolerance of neural function and behavior in Drosophila melanogaster to the foraging gene (for, which encodes a cGMP-dependent protein kinase (PKG)) as well as to its downstream target, protein phosphatase 2A (PP2A). Genetic and pharmacological manipulations revealed that reduced PKG (or PP2A) activity caused increased thermotolerance of synaptic transmission at the larval neuromuscular junction. Like synaptic transmission, feeding movements were preserved at higher temperatures in larvae with lower PKG levels. In a comparative assay, pharmacological manipulations altering thermotolerance in a central circuit of Locusta migratoria demonstrated conservation of this neuroprotective pathway. In this circuit, either the inhibition of PKG or PP2A induced robust thermotolerance of neural function. We suggest that PKG and therefore the polymorphism associated with the allelic variation in for may provide populations with natural variation in heat stress tolerance. for's function in behavior is conserved across most organisms, including ants, bees, nematodes, and mammals. PKG's role in thermotolerance may also apply to these and other species. Natural variation in thermotolerance arising from genes involved in the PKG pathway could impact the evolution of thermotolerance in natural populations.  相似文献   

4.
Poikilothermic organisms such as insects have mechanisms to protect neural function under high temperature stress. Natural variation at the foraging (for) locus of the fruit fly, Drosophila melanogaster, encoding a cGMP-dependent protein kinase (PKG), influences neural thermotolerance in Drosophila larvae. The current study re-examines thermotolerance of adult flies to account for inconsistencies in the documented role of for during hyperthermia. We found that adult for R (rover) flies with high PKG activity were incapacitated faster under hyperthermic conditions of 39°C compared to their lower PKG activity counterparts for s and for s2 (sitters), but not at higher temperatures. This indicates that lowered PKG activity promotes tolerance to heat stress, and that the for gene influences thermotolerance for a narrow range of temperatures in adult flies.  相似文献   

5.
The most common form of protein-coding gene overlap in eukaryotes is a simple nested structure, whereby one gene is embedded in an intron of another. Analysis of nested protein-coding genes in vertebrates, fruit flies and nematodes revealed substantially higher rates of evolutionary gains than losses. The accumulation of nested gene structures could not be attributed to any obvious functional relationships between the genes involved and represents an increase of the organizational complexity of animal genomes via a neutral process.  相似文献   

6.
地中海实蝇及其近缘种基因芯片检测研究   总被引:1,自引:0,他引:1  
本研究选择线粒体DNA (mtDNA) 细胞色素氧化酶Ⅰ基因(COⅠ)为分子标记基因,以双翅目实蝇科昆虫DNA序列为目标,建立了我国进境植物检疫害虫地中海实蝇Ceratitis capitata、芒果小条实蝇C. cosyra和纳塔尔小条实蝇C. rosa等生物芯片检测方法。地中海实蝇及其近缘种检测芯片由检测探针(实蝇科通用探针1条,小条实蝇属通用探针1条,地中海实蝇、芒果小条实蝇和纳塔尔小条实蝇近缘种探针2条和种特异探针4条)、质控探针(定位点探针、阳性质控、阴性质控和空白对照探针各1条)组成。芯片检测结果表明,检测探针特异性强,能实现上述3种实蝇的种类快速区分和准确鉴定; 检测方法稳定性好,地中海实蝇不同虫态(卵、幼虫、蛹和成虫)和不同地理种群检测结果完全一致。地中海实蝇生物芯片检测技术将为我国进口果蔬中检疫性实蝇快速筛查和种类鉴定提供检测方法,同时,还可应用到其他属的实蝇以及相关害虫的检疫中,为有害生物的快速鉴定提供了新方法。  相似文献   

7.
Senescence is the progressive deterioration of organismal functionleading to accelerating rates of mortality. Cumulative extrinsicand intrinsic stresses are thought to contribute to senescence.Molecular chaperones, such as heat shock proteins, are hypothesizedto modulate senescence through their ability to mitigate proteindamage. Recent discoveries made with the nematode Caenorhabditiselegans and the fruit fly Drosophila melanogaster lend strongsupport to this theory. Longevity extending mutants of the nematodealso increase intrinsic and inducible thermotolerance, and theyoverexpress heat shock proteins upon thermal shock. Intriguingly,these genes regulate dauer (diapause) formation, and are associatedwith an insulin-like dependent signal transduction pathway.Direct evidence for a casual role of hsp70 in aging is providedby analysis of transgenic fruit flies. When hsp70 is inducedby mild heat shock, flies that overexpress the protein havegreatly reduced mortality rates during subsequent weeks of agingat normal temperatures. Current work with fruit flies focuseson the relationship between insulin-like receptors, ovariandiapause, heat shock and aging.  相似文献   

8.
We characterized 26 wild fruit flies comparative population genomics from six different altitude and latitude locations by whole genome resequencing. Genetic diversity was relatively higher in Ganzi and Chongqing populations. We also found 13 genes showing selection signature between different altitude flies and variants related to hypoxia and temperature stimulus, were preferentially selected during the flies evolution. One of the most striking selective sweeps found in all high altitude flies occurred in the region harboring Hsp70Aa and Hsp70Ab on chromosome 3R. Interestingly, these two genes are involved in GO terms including response to hypoxia, unfolded protein, temperature stimulus, heat, oxygen levels. Mutation in HPH gene, a candidate gene in the hypoxia inducible factor pathway, might contributes to hypoxic high-altitude adaptation. Intriguingly, some of the selected genes, primarily utilized in humans, were involved in the response to hypoxia, which could imply a conserved molecular mechanisms underlying high-altitude adaptation between insects and humans.  相似文献   

9.
刘永杰  贺金  肖鹏 《昆虫学报》2009,52(7):769-774
为了探讨鱼藤酮对黑腹果蝇Drosophila melanogaster运动行为的影响与其头部多巴胺水平之间的关系,我们测定了鱼藤酮对黒腹果蝇成虫运动行为、头部多巴胺水平及酪氨酸羟化酶和多巴脱羧酶基因表达的影响。结果表明:与取食未加入药剂饲料的果蝇相比雌成虫用0.2~0.8 mmol/L、雄成虫用0.1~0.8 mmol/L浓度药液配制的饲料连续饲养6 d后运动能力显著下降,在0.8 mmol/L浓度下雌、雄成虫的运动能力分别仅为对照的55.6%和49.1%。取食用0.8 mmol/L浓度药液配制饲料6,12和21 d的果蝇雌、雄成虫头部多巴胺水平均显著下降,雌成虫头部多巴胺水平分别为对照雌成虫的83.2%,72.3%和59.8%;雄成虫头部多巴胺水平分别为对照雄成虫的79.3%,66.8%和53.2%。用0.8 mmol/L浓度鱼藤酮处理6,12和21d,雌成虫头部酪氨酸羟化酶基因(pale)的表达水平分别为对照的76.3%,51.4%和37.3%,多巴脱羧酶基因(Ddc)的表达水平分别为对照的87.1%,78.2%和63.5%, 均显著下降。结果提示,鱼藤酮可干扰果蝇成虫头部酪氨酸羟化酶和多巴脱羧酶基因的表达,导致果蝇头部多巴胺水平下降,进而影响了果蝇的运动行为。  相似文献   

10.
Reticulons (RTNs) are a family of evolutionary conserved proteinswith four RTN paralogs (RTN1, RTN2, RTN3, and RTN4) presentin land vertebrates. While the exact functions of RTN1 to RTN3are unknown, mammalian RTN4-A/Nogo-A was shown to inhibit theregeneration of severed axons in the mammalian central nervoussystem (CNS). This inhibitory function is exerted via two distinctregions, one within the Nogo-A–specific N-terminus andthe other in the conserved reticulon homology domain (RHD).In contrast to mammals, fish are capable of CNS axon regeneration.We performed detailed analyses of the fish rtn gene family todetermine whether this regeneration ability correlates withthe absence of the neurite growth inhibitory protein Nogo-A.A total of 7 rtn genes were identified in zebrafish, 6 in pufferfish,and 30 in eight additional fish species. Phylogenetic and syntenicrelationships indicate that the identified fish rtn genes areorthologs of mammalian RTN1, RTN2, RTN3, and RTN4 and that severalparalogous fish genes (e.g., rtn4 and rtn6) resulted from genomeduplication events early in actinopterygian evolution. Accordingly,sequences homologous to the conserved RTN4/Nogo RHD are presentin two fish genes, rtn4 and rtn6. However, sequences comparableto the first 1,000 amino acids of mammalian Nogo-A includinga major neurite growth inhibitory region are absent in zebrafish.This result is in accordance with functional data showing thataxon growth inhibitory molecules are less prominent in fisholigodendrocytes and CNS myelin compared to mammals.  相似文献   

11.
12.
《Gene》1998,216(1):13-19
The human FRG1 gene maps to human chromosome 4q35 and was identified as a candidate for facioscapulohumeral muscular dystrophy. However, FRG1 is apparently not causally associated with the disease and as yet, its function remains unclear. We have cloned homologues of FRG1 from two additional vertebrates, the mouse and the Japanese puffer fish Fugu rubripes, and investigated the genomic organization of the genes in the two species. The intron/exon structure of the genes is identical throughout the protein coding region, although the Fugu gene is five times smaller than the mouse gene. We have also identified FRG1 homologues in two nematodes; Caenorhabditis elegans and Brugia malayi. The FRG1 protein is highly conserved and contains a lipocalin sequence motif, suggesting it may function as a transport protein.  相似文献   

13.
14.
15.
16.
The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions–which together covered most of the autosomal chromosomes–to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with molecules implicated in autophagy and small GTPase regulation.  相似文献   

17.
The early origin of four vertebrate Hox gene clusters duringthe evolution of gnathostomes was likely caused by two consecutiveduplications of the entire genome and the subsequent loss ofindividual genes. The presumed conserved and important rolesof these genes in tetrapods during development led to the generalassumption that Hox cluster architecture had remained unchangedsince the last common ancestor of all jawed vertebrates. Butrecent data from teleost fishes reveals that this is not thecase. Here, we present an analysis of the evolution of vertebrateHox genes and clusters, with emphasis on the differences betweenthe Hox A clusters of fish (actinopterygian) and tetrapod (sarcopterygian)lineages. In contrast to the general conservation of genomicarchitecture and gene sequence observed in sarcopterygians,the evolutionary history of actinopterygian Hox clusters likelyincludes an additional (third) genome duplication that initiallyincreased the number of clusters from four to eight. We document,for the first time, higher rates of gene loss and gene sequenceevolution in the Hox genes of fishes compared to those of landvertebrates. These two observations might suggest that two differentmolecular evolutionary strategies exist in the two major vertebratelineages. Preliminary data from the African cichlid fish Oreochromisniloticus compared to those of the pufferfish and zebrafishreveal important differences in Hox cluster architecture amongfishes and, together with genetic mapping data from Medaka,indicate that the third genome duplication was not zebrafish-specific,but probably occurred early in the history of fishes. Each descendingfish lineage that has been characterized so far, distinctivelymodified its Hox cluster architecture through independent secondarylosses. This variation is related to the large body plan differencesobserved among fishes, such as the loss of entire sets of appendagesand ribs in some lineages.  相似文献   

18.
Recent genomic data analyses have revealed important underlying logics in eukaryotic gene regulation, such as CpG islands (CGIs)-dependent dual-mode gene regulation. In mammals, genes lacking CGIs at their promoters are generally regulated by interconversion between euchromatin and heterochromatin, while genes associated with CGIs constitutively remain as euchromatin. Whether a similar mode of gene regulation exists in non-mammalian species has been unknown. Here, through comparative epigenomic analyses, we demonstrate that the dual-mode gene regulation program is common in various eukaryotes, even in the species lacking CGIs. In cases of vertebrates or plants, we find that genes associated with high methylation level promoters are inactivated by forming heterochromatin and expressed in a context-dependent manner. In contrast, the genes with low methylation level promoters are broadly expressed and remain as euchromatin even when repressed by Polycomb proteins. Furthermore, we show that invertebrate animals lacking DNA methylation, such as fruit flies and nematodes, also have divergence in gene types: some genes are regulated by Polycomb proteins, while others are regulated by heterochromatin formation. Altogether, our study establishes gene type divergence and the resulting dual-mode gene regulation as fundamental features shared in a broad range of higher eukaryotic species.  相似文献   

19.
The evolution of novel features requires evolutionary change in gene function. New work in nematodes shows how conserved genes can nonetheless contribute to innovative traits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号