首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
3.

Background

Base-resolution methylome data generated by whole-genome bisulfite sequencing (WGBS) is often used to segment the genome into domains with distinct methylation levels. However, most segmentation methods include many parameters to be carefully tuned and/or fail to exploit the unsurpassed resolution of the data. Furthermore, there is no simple method that displays the composition of the domains to grasp global trends in each methylome.

Results

We propose to use changepoint detection for domain demarcation based on base-resolution methylome data. While the proposed method segments the methylome in a largely comparable manner to conventional approaches, it has only a single parameter to be tuned. Furthermore, it fully exploits the base-resolution of the data to enable simultaneous detection of methylation changes in even contrasting size ranges, such as focal hypermethylation and global hypomethylation in cancer methylomes. We also propose a simple plot termed methylated domain landscape (MDL) that globally displays the size, the methylation level and the number of the domains thus defined, thereby enabling one to intuitively grasp trends in each methylome. Since the pattern of MDL often reflects cell lineages and is largely unaffected by data size, it can serve as a novel signature of methylome.

Conclusions

Changepoint detection in base-resolution methylome data followed by MDL plotting provides a novel method for methylome characterization and will facilitate global comparison among various WGBS data differing in size and even species origin.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1809-5) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

Copy number variations (CNVs) confer significant effects on genetic innovation and phenotypic variation. Previous CNV studies in swine seldom focused on in-depth characterization of global CNVs.

Results

Using whole-genome assembly comparison (WGAC) and whole-genome shotgun sequence detection (WSSD) approaches by next generation sequencing (NGS), we probed formation signatures of both segmental duplications (SDs) and individualized CNVs in an integrated fashion, building the finest resolution CNV and SD maps of pigs so far. We obtained copy number estimates of all protein-coding genes with copy number variation carried by individuals, and further confirmed two genes with high copy numbers in Meishan pigs through an enlarged population. We determined genome-wide CNV hotspots, which were significantly enriched in SD regions, suggesting evolution of CNV hotspots may be affected by ancestral SDs. Through systematically enrichment analyses based on simulations and bioinformatics analyses, we revealed CNV-related genes undergo a different selective constraint from those CNV-unrelated regions, and CNVs may be associated with or affect pig health and production performance under recent selection.

Conclusions

Our studies lay out one way for characterization of CNVs in the pig genome, provide insight into the pig genome variation and prompt CNV mechanisms studies when using pigs as biomedical models for human diseases.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-593) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.

Background

Whole-genome sequencing is an important method to understand the genetic information, gene function, biological characteristics and survival mechanisms of organisms. Sequencing large genomes is very simple at present. However, we encountered a hard-to-sequence genome of Pseudomonas aeruginosa phage PaP1. Shotgun sequencing method failed to complete the sequence of this genome.

Results

After persevering for 10 years and going over three generations of sequencing techniques, we successfully completed the sequence of the PaP1 genome with a length of 91,715 bp. Single-molecule real-time sequencing results revealed that this genome contains 51 N-6-methyladenines and 152 N-4-methylcytosines. Three significant modified sequence motifs were predicted, but not all of the sites found in the genome were methylated in these motifs. Further investigations revealed a novel immune mechanism of bacteria, in which host bacteria can recognise and repel modified bases containing inserts in a large scale. This mechanism could be accounted for the failure of the shotgun method in PaP1 genome sequencing. This problem was resolved using the nfi- mutant of Escherichia coli DH5α as a host bacterium to construct a shotgun library.

Conclusions

This work provided insights into the hard-to-sequence phage PaP1 genome and discovered a new mechanism of bacterial immunity. The methylome of phage PaP1 is responsible for the failure of shotgun sequencing and for bacterial immunity mediated by enzyme Endo V activity; this methylome also provides a valuable resource for future studies on PaP1 genome replication and modification, as well as on gene regulation and host interaction.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-803) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background

The genome of the human gastric pathogen Helicobacter pylori encodes a large number of DNA methyltransferases (MTases), some of which are shared among many strains, and others of which are unique to a given strain. The MTases have potential roles in the survival of the bacterium. In this study, we sequenced a Malaysian H. pylori clinical strain, designated UM032, by using a combination of PacBio Single Molecule, Real-Time (SMRT) and Illumina MiSeq next generation sequencing platforms, and used the SMRT data to characterize the set of methylated bases (the methylome).

Results

The N4-methylcytosine and N6-methyladenine modifications detected at single-base resolution using SMRT technology revealed 17 methylated sequence motifs corresponding to one Type I and 16 Type II restriction-modification (R-M) systems. Previously unassigned methylation motifs were now assigned to their respective MTases-coding genes. Furthermore, one gene that appears to be inactive in the H. pylori UM032 genome during normal growth was characterized by cloning.

Conclusion

Consistent with previously-studied H. pylori strains, we show that strain UM032 contains a relatively large number of R-M systems, including some MTase activities with novel specificities. Additional studies are underway to further elucidating the biological significance of the R-M systems in the physiology and pathogenesis of H. pylori.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1585-2) contains supplementary material, which is available to authorized users.  相似文献   

8.

Background

Aberrant DNA methylation is a hallmark of many cancers. Classically there are two types of endometrial cancer, endometrioid adenocarcinoma (EAC), or Type I, and uterine papillary serous carcinoma (UPSC), or Type II. However, the whole genome DNA methylation changes in these two classical types of endometrial cancer is still unknown.

Results

Here we described complete genome-wide DNA methylome maps of EAC, UPSC, and normal endometrium by applying a combined strategy of methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylation-sensitive restriction enzyme digestion sequencing (MRE-seq). We discovered distinct genome-wide DNA methylation patterns in EAC and UPSC: 27,009 and 15,676 recurrent differentially methylated regions (DMRs) were identified respectively, compared with normal endometrium. Over 80% of DMRs were in intergenic and intronic regions. The majority of these DMRs were not interrogated on the commonly used Infinium 450K array platform. Large-scale demethylation of chromosome X was detected in UPSC, accompanied by decreased XIST expression. Importantly, we discovered that the majority of the DMRs harbored promoter or enhancer functions and are specifically associated with genes related to uterine development and disease. Among these, abnormal methylation of transposable elements (TEs) may provide a novel mechanism to deregulate normal endometrium-specific enhancers derived from specific TEs.

Conclusions

DNA methylation changes are an important signature of endometrial cancer and regulate gene expression by affecting not only proximal promoters but also distal enhancers.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-868) contains supplementary material, which is available to authorized users.  相似文献   

9.
10.
Ji YQ  Wu DD  Wu GS  Wang GD  Zhang YP 《PloS one》2011,6(10):e26416

Background

A major reduction of genetic diversity in mtDNA occurred during the domestication of East Asian pigs. However, the extent to which genetic diversity has been lost in the nuclear genome is uncertain. To reveal levels and patterns of nucleotide diversity and to elucidate the genetic relationships and demographic history of domestic pigs and their ancestors, wild boars, we investigated 14 nuclear markers (including 8 functional genes, 2 pseudogenes and 4 intergenic regions) from 11 different chromosomes in East Asia-wide samples and pooled them with previously obtained mtDNA data for a combined analysis.

Principal Findings

The results indicated that domestic pigs and wild boars possess comparable levels of nucleotide diversity across the nuclear genome, which is inconsistent with patterns that have been found in mitochondrial genome.

Conclusions

This incongruence between the mtDNA and nuclear genomes is suggestive of a large-scale backcross between male wild boars and female domestic pigs in East Asia. Our data reveal the impacts of founder effects and backcross on the pig genome and help us better understand the complex demographic histories of East Asian pigs, which will be useful for future work on artificial selection.  相似文献   

11.

Background

Irinotecan (SN38) and oxaliplatin are chemotherapeutic agents used in the treatment of colorectal cancer. However, the frequent development of resistance to these drugs represents a considerable challenge in the clinic. Alus as retrotransposons comprise 11% of the human genome. Genomic toxicity induced by carcinogens or drugs can reactivate Alus by altering DNA methylation. Whether or not reactivation of Alus occurs in SN38 and oxaliplatin resistance remains unknown.

Results

We applied reduced representation bisulfite sequencing (RRBS) to investigate the DNA methylome in SN38 or oxaliplatin resistant colorectal cancer cell line models. Moreover, we extended the RRBS analysis to tumor tissue from 14 patients with colorectal cancer who either did or did not benefit from capecitabine + oxaliplatin treatment. For the clinical samples, we applied a concept of ‘DNA methylation entropy’ to estimate the diversity of DNA methylation states of the identified resistance phenotype-associated methylation loci observed in the cell line models. We identified different loci being characteristic for the different resistant cell lines. Interestingly, 53% of the identified loci were Alu sequences- especially the Alu Y subfamily. Furthermore, we identified an enrichment of Alu Y sequences that likely results from increased integration of new copies of Alu Y sequence in the drug-resistant cell lines. In the clinical samples, SOX1 and other SOX gene family members were shown to display variable DNA methylation states in their gene regions. The Alu Y sequences showed remarkable variation in DNA methylation states across the clinical samples.

Conclusion

Our findings imply a crucial role of Alu Y in colorectal cancer drug resistance. Our study underscores the complexity of colorectal cancer aggravated by mobility of Alu elements and stresses the importance of personalized strategies, using a systematic and dynamic view, for effective cancer therapy.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1552-y) contains supplementary material, which is available to authorized users.  相似文献   

12.

Background

So-called 936-type phages are among the most frequently isolated phages in dairy facilities utilising Lactococcus lactis starter cultures. Despite extensive efforts to control phage proliferation and decades of research, these phages continue to negatively impact cheese production in terms of the final product quality and consequently, monetary return.

Results

Whole genome sequencing and in silico analysis of three 936-type phage genomes identified several putative (orphan) methyltransferase (MTase)-encoding genes located within the packaging and replication regions of the genome. Utilising SMRT sequencing, methylome analysis was performed on all three phages, allowing the identification of adenine modifications consistent with N-6 methyladenine sequence methylation, which in some cases could be attributed to these phage-encoded MTases. Heterologous gene expression revealed that M.Phi145I/M.Phi93I and M.Phi93DAM, encoded by genes located within the packaging module, provide protection against the restriction enzymes HphI and DpnII, respectively, representing the first functional MTases identified in members of 936-type phages.

Conclusions

SMRT sequencing technology enabled the identification of the target motifs of MTases encoded by the genomes of three lytic 936-type phages and these MTases represent the first functional MTases identified in this species of phage. The presence of these MTase-encoding genes on 936-type phage genomes is assumed to represent an adaptive response to circumvent host encoded restriction-modification systems thereby increasing the fitness of the phages in a dynamic dairy environment.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-831) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.

Background

DNA methylation of promoter CpG islands is associated with gene suppression, and its unique genome-wide profiles have been linked to tumor progression. Coupled with high-throughput sequencing technologies, it can now efficiently determine genome-wide methylation profiles in cancer cells. Also, experimental and computational technologies make it possible to find the functional relationship between cancer-specific methylation patterns and their clinicopathological parameters.

Methodology/Principal Findings

Cancer methylome system (CMS) is a web-based database application designed for the visualization, comparison and statistical analysis of human cancer-specific DNA methylation. Methylation intensities were obtained from MBDCap-sequencing, pre-processed and stored in the database. 191 patient samples (169 tumor and 22 normal specimen) and 41 breast cancer cell-lines are deposited in the database, comprising about 6.6 billion uniquely mapped sequence reads. This provides comprehensive and genome-wide epigenetic portraits of human breast cancer and endometrial cancer to date. Two views are proposed for users to better understand methylation structure at the genomic level or systemic methylation alteration at the gene level. In addition, a variety of annotation tracks are provided to cover genomic information. CMS includes important analytic functions for interpretation of methylation data, such as the detection of differentially methylated regions, statistical calculation of global methylation intensities, multiple gene sets of biologically significant categories, interactivity with UCSC via custom-track data. We also present examples of discoveries utilizing the framework.

Conclusions/Significance

CMS provides visualization and analytic functions for cancer methylome datasets. A comprehensive collection of datasets, a variety of embedded analytic functions and extensive applications with biological and translational significance make this system powerful and unique in cancer methylation research. CMS is freely accessible at: http://cbbiweb.uthscsa.edu/KMethylomes/.  相似文献   

15.
Zhu J  Jiang Z  Gao F  Hu X  Zhou L  Chen J  Luo H  Sun J  Wu S  Han Y  Yin G  Chen M  Han Z  Li X  Huang Y  Zhang W  Zhou F  Chen T  Fa P  Wang Y  Sun L  Leng H  Sun F  Liu Y  Ye M  Yang H  Cai Z  Gui Y  Zhang X 《PloS one》2011,6(11):e28223
  相似文献   

16.
17.

Background

Chronic physical aggression (CPA) is characterized by frequent use of physical aggression from early childhood to adolescence. Observed in approximately 5% of males, CPA is associated with early childhood adverse environments and long-term negative consequences. Alterations in DNA methylation, a covalent modification of DNA that regulates genome function, have been associated with early childhood adversity.

Aims

To test the hypothesis that a trajectory of chronic physical aggression during childhood is associated with a distinct DNA methylation profile during adulthood.

Methods

We analyzed genome-wide promoter DNA methylation profiles of T cells from two groups of adult males assessed annually for frequency of physical aggression between 6 and 15 years of age: a group with CPA and a control group. Methylation profiles covering the promoter regions of 20 000 genes and 400 microRNAs were generated using MeDIP followed by hybridization to microarrays.

Results

In total, 448 distinct gene promoters were differentially methylated in CPA. Functionally, many of these genes have previously been shown to play a role in aggression and were enriched in biological pathways affected by behavior. Their locations in the genome tended to form clusters spanning millions of bases in the genome.

Conclusions

This study provides evidence of clustered and genome-wide variation in promoter DNA methylation in young adults that associates with a history of chronic physical aggression from 6 to 15 years of age. However, longitudinal studies of methylation during early childhood will be necessary to determine if and how this methylation variation in T cells DNA plays a role in early development of chronic physical aggression.  相似文献   

18.

Background

Recent completion of swine genome may simplify the production of swine as a large biomedical model. Here we studied sequence and location of known swine miRNA genes, key regulators of protein-coding genes at the level of RNA, and compared them to human and mouse data to prioritize future molecular studies.

Results

Distribution of miRNA genes in pig genome shows no particular relation to different genomic features including protein coding genes - proportions of miRNA genes in intergenic regions, introns and exons roughly agree with the size of these regions in the pig genome. Our analyses indicate that host genes harbouring intragenic miRNAs are longer from other protein-coding genes, however, no important GO enrichment was found. Swine mature miRNAs show high sequence similarity to their human and mouse orthologues. Location of miRNA genes relative to protein-coding genes is also similar among studied species, however, there are differences in the precise position in particular intergenic regions and within particular hosts. The most prominent difference between pig and human miRNAs is a large group of pig-specific sequences (53% of swine miRNAs). We found no evidence that this group of evolutionary new pig miRNAs is different from old miRNAs genes with respect to genomic location except that they are less likely to be clustered.

Conclusions

There are differences in precise location of orthologues miRNA genes in particular intergenic regions and within particular hosts, and their meaning for coexpression with protein-coding genes deserves experimental studies. Functional studies of a large group of pig-specific sequences in future may reveal limits of the pig as a model organism to study human gene expression.

Electronic supplementary material

The online version of this article (doi:10.1186/s12863-015-0166-3) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.

Background

Wild birds are an important but to some extent under-studied reservoir for emerging pathogens. We used unbiased sequencing methods for virus discovery in shorebird samples from the Delaware Bay, USA; an important feeding ground for thousands of migratory birds.

Findings

Analysis of shorebird fecal samples indicated the presence of a novel astrovirus and coronavirus. A sanderling sample yielded sequences with distant homology to avian nephritis virus 1, an astrovirus associated with acute nephritis in poultry. A ruddy turnstone sample yielded sequences with homology to deltacoronaviruses.

Conclusions

Our findings highlight shorebirds as a virus reservoir and the need to closely monitor wild bird populations for the emergence of novel virus variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号