首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
Chromatin control of HIV‐1 gene expression   总被引:4,自引:0,他引:4  
Marzio G  Giacca M 《Genetica》1999,106(1-2):125-130
  相似文献   

3.
C Ulich  D Harrich  P Estes    R B Gaynor 《Journal of virology》1996,70(7):4871-4876
Mutation of either of two critical human immunodeficiency virus type 1 (HIV-1) regulatory proteins, Tat and Rev, results in marked defects in viral replication. Thus, inhibition of the function of one or both of these proteins can significantly inhibit viral growth. In the present study, we constructed a novel transdominant Tat mutant protein and compared its efficiency in inhibiting HIV-1 replication with that of transdominant mutant Rev M10 when these proteins were stably expressed either alone or in combination in T-lymphocyte cell lines. The transdominant Tat mutant protein alone resulted in a modest inhibition of HIV replication, but it was able to enhance the ability of the M10 Rev mutant protein to inhibit HIV-1 replication. These results suggest a possible synergistic effect of these transdominant mutant proteins in inhibiting HIV-1 replication.  相似文献   

4.
5.
6.
7.
Astrocytes protect neurons, but also evoke proinflammatory responses to injury and viral infections, including HIV. There is a prevailing notion that HIV-1 Rev protein function in astrocytes is perturbed, leading to restricted viral replication. In earlier studies, our finding of restricted viral entry into astrocytes led us to investigate whether there are any intracellular restrictions, including crippled Rev function, in astrocytes. Despite barely detectable levels of DDX3 (Rev-supporting RNA helicase) and TRBP (anti-PKR) in primary astrocytes compared to astrocytic cells, Rev function was unperturbed in wild-type, but not DDX3-ablated astrocytes. As in permissive cells, after HIV-1 entry bypass in astrocytes, viral-encoded Tat and Rev proteins had robust regulatory activities, leading to efficient viral replication. Productive HIV-1 infection in astrocytes persisted for several weeks. Our findings on HIV-1 entry bypass in astrocytes demonstrated that the intracellular environment is conducive to viral replication and that Tat and Rev functions are unperturbed.  相似文献   

8.
9.
10.
11.
ZAP是一种抗病毒因子,能够特异性结合病毒RNA并招募细胞中的RNA酶降解所结合的靶RNA,从而抑制某些病毒的复制,如鼠白血病病毒(MLV)、辛德比斯病毒(SIN).ZAP对HIV病毒抑制作用并不明显.Tat和Rev是HIV编码的两种可以特异性结合HIVRNA的蛋白质,将它们与ZAP构建成融合蛋白,使得融合蛋白通过Tat或Rev结合HIVRNA并通过ZAP降解HIVRNA,从而抑制HIV假病毒载体携带基因的表达.这一结果为抑制HIV病毒提供了一个新思路,也支持了ZAP招募mRNA降解机器降解靶RNA的模型.  相似文献   

12.
Regulation of expression of human immunodeficiency virus   总被引:35,自引:0,他引:35  
  相似文献   

13.
New therapeutic agents able to block HIV-1 replication are eagerly sought after to increase the possibilities of treatment of resistant viral strains. In this report, we describe a rational strategy to identify small peptide sequences owning the dual property of penetrating within lymphocytes and of binding to a protein target. Such sequences were identified for two important HIV-1 regulatory proteins, Tat and Rev. Their association to a stabilizing domain consisting of human small ubiquitin-related modifier-1 (SUMO-1) allowed the generation of small proteins named SUMO-1 heptapeptide protein transduction domain for binding Tat (SHPT) and SUMO-1 heptapeptide protein transduction domain for binding Rev (SHPR), which are stable and efficiently penetrate within primary lymphocytes. Analysis of the antiviral activity of these proteins showed that one SHPR is active in both primary lymphocytes and macrophages, whereas one SHPT is active only in the latter cells. These proteins may represent prototypes of new therapeutic agents targeting the crucial functions exerted by both viral regulatory factors.  相似文献   

14.
15.
16.
Human immunodeficiency virus type 1 (HIV-1) gene expression and replication is highly dependent on and modulated by interactions between viral and host cellular factors. Tat protein, encoded by one of the HIV-1 regulatory genes, tat, is essential for HIV-1 gene expression. A number of host cellular factors have been shown to interact with Tat in this process. During our attempts to determine the molecular mechanisms of Tat interaction with brain cells, we isolated a cDNA clone that encodes a novel Tat-interacting protein of 110 kDa or Tip110 from a human fetal brain cDNA library. GenBank BLAST search revealed that Tip110 was almost identical to a previously cloned KIAA0156 gene with unknown functions. In vivo binding of Tip110 with Tat was confirmed by immunoprecipitation and Western blotting, in combination with mutagenesis. The yeast three-hybrid RNA-protein interaction assay indicated no direct interaction of Tip110 with Tat transactivating response element RNA. Nevertheless, Tip110 strongly synergized with Tat on Tat-mediated chloramphenicol acetyltransferase reporter gene expression and HIV-1 virus production, whereas down-modulation of constitutive Tip110 expression inhibited HIV-1 virus production. Northern blot analysis showed that Tip110 mRNA was expressed in a variety of human tissues and cells. Moreover, digital fluorescence microscopic imaging revealed that Tip110 was expressed exclusively in the nucleus, and within a nuclear speckle structure that has recently been described for human cyclin T and CDK9, two critical components for Tat transactivation function on HIV-1 long terminal repeat promoter. Taken together, these data demonstrate that Tip110 regulates Tat transactivation activity through direct interaction, and suggest that Tip110 is an important cellular factor for HIV-1 gene expression and viral replication.  相似文献   

17.
18.
19.
反式激活应答(transactivation response,TAR)元件RNA作为HIV-1中的一种非编码RNA,从转录与翻译水平负调控HIV-1的基因表达.同时HIV-1采取了相应的策略拮抗TAR RNA的负调控作用:病毒蛋白Tat或细胞蛋白TAR RNA结合蛋白(TRBP)结合TAR RNA后,分别在转录与翻译水平促进HIV-1的基因表达.此外,TAR编码的miRNA有助于保持HIV的潜伏感染及阻止细胞凋亡.TAR与其它蛋白间相互作用及其功能的研究对于深入了解HIV-1感染细胞后的调控机制,寻求新的抗HIV治疗靶点具有重要意义.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号