首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
H A Tissenbaum  G Ruvkun 《Genetics》1998,148(2):703-717
Mutations in daf-2 and age-1 cause a dramatic increase in longevity as well as developmental arrest at the dauer diapause stage in Caenorhabditis elegans. daf-2 and age-1 encode components of an insulin-like signaling pathway. Both daf-2 and age-1 act at a similar point in the genetic epistasis pathway for dauer arrest and longevity and regulate the activity of the daf-16 gene. Mutations in daf-16 cause a dauer-defective phenotype and are epistatic to the diapause arrest and life span extension phenotypes of daf-2 and age-1 mutants. Here we show that mutations in this pathway also affect fertility and embryonic development. Weak daf-2 alleles, and maternally rescued age-1 alleles that cause life span extension but do not arrest at the dauer stage, also reduce fertility and viability. We find that age-1(hx546) has reduced both maternal and zygotic age-1 activity. daf-16 mutations suppress all of the daf-2 and age-1 phenotypes, including dauer arrest, life span extension, reduced fertility, and viability defects. These data show that insulin signaling, mediated by DAF-2 through the AGE-1 phosphatidylinositol-3-OH kinase, regulates reproduction and embryonic development, as well as dauer diapause and life span, and that DAF-16 transduces these signals. The regulation of fertility, life span, and metabolism by an insulin-like signaling pathway is similar to the endocrine regulation of metabolism and fertility by mammalian insulin signaling.  相似文献   

3.
4.
During C. elegans development, animals must choose between reproductive growth or dauer diapause in response to sensory cues. Insulin/IGF-I and TGF-beta signaling converge on the orphan nuclear receptor daf-12 to mediate this choice. Here we show that daf-9 acts downstream of these inputs but upstream of daf-12. daf-9 and daf-12 mutants have similar larval defects and modulate insulin/IGF-I and gonadal signals that regulate adult life span. daf-9 encodes a cytochrome P450 related to vertebrate steroidogenic hydroxylases, suggesting that it could metabolize a DAF-12 ligand. Sterols may be the daf-9 substrate and daf-12 ligand because cholesterol deprivation phenocopies mutant defects. Sensory neurons, hypodermis, and somatic gonadal cells expressing daf-9 identify potential endocrine tissues. Evidently, lipophilic hormones influence nematode metabolism, diapause, and life span.  相似文献   

5.
6.
7.
8.
9.
The daf-9 gene functions to integrate transforming growth factor-beta and insulin-like signaling pathways to regulate Caenorhabditis elegans larval development. Mutations in daf-9 result in transient dauer-like larval arrest, abnormal reproductive development, molting defects and increased adult longevity. The phenotype is sterol-dependent, and dependent on the activity of DAF-12, a nuclear hormone receptor. Genetic tests show that daf-9 is upstream of daf-12 in the genetic pathways for larval development and adult longevity. daf-9 encodes a cytochrome P450 related to those involved in biosynthesis of steroid hormones in mammals. We propose that it specifies a step in the biosynthetic pathway for a DAF-12 ligand, which might be a steroid. The surprising cellular specificity of daf-9 expression (predominantly in two sensory neurons) supports a previously unrecognized role for these cells in neuroendocrine control of larval development, reproduction and life span.  相似文献   

10.
11.
12.
13.
14.
15.
Nanji M  Hopper NA  Gems D 《Aging cell》2005,4(5):235-245
The DAF-2 insulin/insulin-like growth factor 1 (IGF-1) receptor signals via a phosphatidylinositol 3-kinase (PI3K) pathway to control dauer larva formation and adult longevity in Caenorhabditis elegans. Yet epistasis analysis suggests signal bifurcation downstream of DAF-2. We have used epistasis analysis to test whether the Ras pathway (which plays a role in signaling from mammalian insulin receptors) acts downstream of DAF-2. We find that an activated Ras mutation, let-60(n1046gf), weakly suppresses constitutive dauer diapause in daf-2 and age-1 (PI3K) mutants. Moreover, increased Ras pathway signaling partially suppresses the daf-2 mutant feeding defect, while reduced Ras pathway signaling enhances it. By contrast, activated Ras extends the longevity induced by mutation of daf-2, while reduced Ras pathway signaling partially suppresses it. Thus, Ras pathway signaling appears to act with insulin/IGF-1 signaling during larval development, but against it during aging.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号