首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
Arabidopsis thaliana (L.) Heynh. has been used as a model system to investigate the regulatory genes that control and coordinate the determination, differentiation and morphogenesis of the floral meristem and floral organs. We show here that benzylaminopurine (BAP), a cytokinin, influences flower development inArabidopsis and induces partial phenocopies of known floral homeotic mutants. Application of BAP to wild-type inflorescences at three developmental stages results in: (i) increase in floral organ number; (ii) formation of abnormal floral organs and (iii) induction of secondary floral buds in the axils of sepals. These abnormalities resemble the phenotypes of mutants,clv1 (increase in organ number),ap1,ap2,ap3 (abnormal floral organs) andap1 (secondary floral buds in the axils of first-whorl organs). In addition, BAP induces secondary floral buds in the axils of perianth members ofapt2-6, ap3-1 andag mutants, and accentuates the phenotype of theapt2-1 mutant to resemble theapt2-6 mutant. These observations suggest that exogenous BAP suppresses the normal functioning of the genes for floral meristem identity and thereby affects flower development and the later stages of floral organ differentiation.Abbreviations BAP N6-benzylaminopurine - CK cytokinin  相似文献   

3.
Recent studies have shown that F‐box proteins constitute a large family in eukaryotes, and play pivotal roles in regulating various developmental processes in plants. However, their functions in monocots are still obscure. In this study, we characterized a recessive mutant dwarf and deformed flower 1‐1 (ddf1‐1) in Oryza sativa (rice). The mutant is abnormal in both vegetative and reproductive development, with significant size reduction in all organs except the spikelet. DDF1 controls organ size by regulating both cell division and cell expansion. In the ddf1‐1 spikelet, the specification of floral organs in whorls 2 and 3 is altered, with most lodicules and stamens being transformed into glume‐like organs and pistil‐like organs, respectively, but the specification of lemma/palea and pistil in whorls 1 and 4 is not affected. DDF1 encodes an F‐box protein anchored in the nucleolus, and is expressed in almost all vegetative and reproductive tissues. Consistent with the mutant floral phenotype, DDF1 positively regulates B‐class genes OsMADS4 and OsMADS16, and negatively regulates pistil specification gene DL. In addition, DDF1 also negatively regulates the Arabidopsis LFY ortholog APO2, implying a functional connection between DDF1 and APO2. Collectively, these results revealed that DDF1, as a newly identified F‐box gene, is a crucial genetic factor with pleiotropic functions for both vegetative growth and floral organ specification in rice. These findings provide additional insights into the molecular mechanism controlling monocot vegetative and reproductive development.  相似文献   

4.
Individual plants of Chenopodium rubrum were given differentnumbers of inductive cycles in a 12 h photoperiod and the patternof reproductive development was analysed after 40 d of growth.At least 2 inductive cycles are required to form any determinatereproductive organs and at least 12 cycles are required fornormal reproductive development. Individuals given a singleinductive cycle display a loss of apical dominance at thosenodes formed immediately after the treatment without the subsequentformation of any floral structures. Plants given between 2 and12 mductive cycles display both determinate reproductive organsand indeter minate vegetative shoots. The pattern of reproductivedevelopment on such plants depends upon the number of cyclesrelative to the developmental age of newly initiated primordia.It is suggested that the early events of floral induction mayinvolve a radical decrease in the ratio of auxin to cytokinin.  相似文献   

5.
Guan CM  Zhu SS  Li XG  Zhang XS 《Plant cell reports》2006,25(11):1133-1137
To study hormone-regulated inflorescence development, we established the in vitro regeneration system of Arabidopsis inflorescences in the presence of cytokinin and auxin. Media containing a combination of thidiazuron (TDZ) and 2,4-dichlorophenoxyacetic acid (2,4-D) were used to induce callus formation. Higher frequencies of calli were obtained by using the inflorescence stems as explants. After transferring the calli to media containing a combination of zeatin and indole-3-acetic acid (IAA), the inflorescences were induced from the calli. The morphology of regenerated inflorescences was similar to that of inflorescences in plants; however, flowers of regenerated inflorescences often lacked a few floral organs. Furthermore, TFL1, a gene involved in floral transition in Arabidopsis, was activated during the inflorescence induction. Our results suggest that the TFL1 gene plays an important role in hormone-regulated inflorescence formation.  相似文献   

6.
7.
Flowering plants go through several phases between regular stem growth and the actual production of flower parts. The stepwise conversion of vegetative into inflorescence and floral meristems is usually unidirectional, but under certain environmental or genetic conditions, meristems can revert to an earlier developmental identity. Vegetative meristems are typically indeterminate, producing organs continuously, whereas flower meristems are determinate, shutting down their growth after reproductive organs are initiated. Inflorescence meristems can show either pattern. Flower and inflorescence development have been investigated in Gerbera hybrida, an ornamental plant in the sunflower family, Asteraceae. Unlike the common model species used to study flower development, Gerbera inflorescences bear a fixed number of flowers, and the architecture of the flowers differ in that Gerbera ovaries are inferior (borne below the perianth). This architectural difference has been exploited to show that floral meristem determinacy and identity are spatially and genetically distinct in Gerbera, and we have shown that a single SEPALLATA-like MADS domain factor controls both flower and inflorescence meristem fate in the plant. Although these phenomena have not been directly observed in Arabidopsis, the integrative role of the SEPALLATA function in reproductive meristem development may be general for all flowering plants.  相似文献   

8.
Irish EE 《Plant physiology》1997,114(3):817-825
The maize (Zea mays L.) mutation Tassel seed 6 (Ts6) disrupts both sex determination in the tassel and the pattern of branching in inflorescences. This results in the formation of supernumerary florets in tassels and ears and in the development of pistils in tassel florets where they are normally aborted. A developmental analysis indicated that extra florets in Ts6 inflorescences are most likely the result of delayed determinacy in spikelet meristems, which then initiate additional floret meristems rather than initiating floral organs as in wild type. I have used culturing experiments to assay whether delayed determinacy of Ts6 mutant tassels is reflected in an altered timing of specific determination events. Length of the tassel was used as a developmental marker. These experiments showed that although Ts6 tassels elongate much more slowly than wild type, both mutant and wild-type tassels gained the ability to form flowers with organs of normal morphology in culture at the same time. In situ hybridization patterns of expression of the maize gene Kn, which is normally expressed in shoot meristems and not in determinate lateral organs, confirmed that additional meristems, rather than lateral organs, are initiated by spikelet meristems in Ts6 tassels.  相似文献   

9.
G N Drews  J L Bowman  E M Meyerowitz 《Cell》1991,65(6):991-1002
We characterized the distribution of AGAMOUS (AG) RNA during early flower development in Arabidopsis. Mutations in this homeotic gene cause the transformation of stamens to petals in floral whorl 3 and of carpels to another ag flower in floral whorl 4. We found that AG RNA is present in the stamen and carpel primordia but is undetectable in sepal and petal primordia throughout early wild-type flower development, consistent with the mutant phenotype. We also analyzed the distribution of AG RNA in apetela2 (ap2) mutant flowers. AP2 is a floral homeotic gene that is necessary for the normal development of sepals and petals in floral whorls 1 and 2. In ap2 mutant flowers, AG RNA is present in the organ primordia of all floral whorls. These observations show that the expression patterns of the Arabidopsis floral homeotic genes are in part established by regulatory interactions between these genes.  相似文献   

10.
Kawanabe T  Fujimoto R 《Plant science》2011,181(4):496-503
Arabidopsis thaliana is a quantitative long-day plant with the timing of the floral transition being regulated by both endogenous signals and multiple environmental factors. fwa is a late-flowering mutant, and this phenotype is due to ectopic FWA expression caused by hypomethylation at the FWA locus. The floral transition results in the activation of the floral development process, the key regulators being the floral meristem identity genes, AP1 (APETALA1) and LFY (LEAFY). In this study, we describe inflorescence abnormalities in plants overexpressing the Arabidopsis lyrata FT (AlFT) and A. thaliana FWA (AtFWA) genes simultaneously. The inflorescence abnormality phenotype was present in only a proportion of plants. All plants overexpressing both AlFT and AtFWA flowered earlier than fwa, suggesting that the inflorescence abnormality and earlier flowering time are caused independently. The inflorescence abnormality phenotype was similar to that of the double mutant of ap1 and lfy, and AP1 and LFY genes were down-regulated in the abnormal inflorescences. From these results, we suggest that not only does ectopic AtFWA expression inhibit AtFT/AlFT function to delay flowering but that overexpression of AtFWA and AlFT together inhibits AP1 and LFY function to produce abnormal inflorescences.  相似文献   

11.
Li J  Chen X 《Plant physiology》2003,132(4):1913-1924
Exportin-t was first identified in humans as a protein that mediates the export of tRNAs from the nucleus to the cytoplasm. Mutations in Los1p, the Saccharomyces cerevisiae exportin-t homolog, result in nuclear accumulation of tRNAs. Because no exportin-t mutants have been reported in multicellular organisms, the developmental functions of exportin-t have not been determined. Here, we report the isolation and characterization of two Arabidopsis exportin-t mutants, paused-5 and paused-6. The mutant phenotypes indicate that exportin-t acts pleiotropically in plant development. In particular, paused-5 and paused-6 result in delayed leaf formation during vegetative development. The two paused mutations also cause the transformation of reproductive organs into perianth organs in the hua1-1 hua2-1 background, which is partially defective in reproductive organ identity specification. The floral phenotypes of hua1-1 hua2-1 paused mutants resemble those of mutations in the floral homeotic gene AGAMOUS. Moreover, paused-5 enhances the mutant phenotypes of two floral meristem identity genes, LEAFY and APETALA1. The developmental defects caused by paused mutations confirm the important roles of exportin-t in gene expression in multicellular organisms. In addition, a paused null allele, paused-6, is still viable, suggesting the presence of redundant tRNA export pathway(s) in Arabidopsis.  相似文献   

12.
Extensive correlations in spirality were observed among vegetative and floral organs in Lilium tigrinum Ker. Organs involved were vegetative leaves, bracts, and bracteoles. These correlations varied in their degree of constancy depending upon the organs involved. The mature inflorescences of L. tigrinum appeared to fit the common definition of a raceme. In 67.3% of the flowers at node 3 on the raceme, the bract-bracteole spirals reversed the spiral of vegetative leaves on the stem. These reversals resembled those observed on essentially cymose inflorescences of certain members of the Caryophyllaceae. Cymose branching was found to be an invariable feature of the inflorescence of L. tigrinum when secondary flowers appear. The apparently indeterminate tips of inflorescence main axes were interpreted as exhibiting stages in progression from a basically determinate (cymose) inflorescence. It was concluded that the ancestors of L. tigrinum had well-developed cymose branching patterns in the inflorescence. Reversal of stem spirals by the bract-bracteole spirals at the apices of many inflorescences was considered to be the result of complete utilization of the inflorescence meristem. Explanations for those reversals were provided by the field theory and by the theory of the first available space.  相似文献   

13.
The biotrophic pathogen Ustilago maydis causes tumors by redirecting vegetative and floral development in maize (Zea mays L.). After fungal injection into immature tassels, tumors were found in all floral organs, with a progression of organ susceptibility that mirrors the sequential location of foci of cell division in developing spikelets. There is sharp demarcation between tumor-forming zones and areas with normal spikelet maturation and pollen shed; within and immediately adjacent to the tumor zone, developing anthers often emerge precociously and exhibit a range of developmental defects suggesting that U. maydis signals and host responses are restricted spatially. Male-sterile maize mutants with defects in anther cell division patterns and cell fate acquisition prior to meiosis formed normal adult leaf tumors, but failed to form anther tumors. Methyl jasmonate and brassinosteroid phenocopied these early-acting anther developmental mutants by generating sterile zones within tassels that never formed tumors. Although auxin, cytokinin, abscisic acid and gibberellin did not impede tassel development, the Dwarf8 mutant defective in gibberellin signaling lacked tassel tumors; the anther ear1 mutant reduced in gibberellin content formed normal tumors; and Knotted1, in which there is excessive growth of leaf tissue, formed much larger vegetative and tassel tumors. We propose the hypothesis that host growth potential and tissue identity modulate the ability of U. maydis to redirect differentiation and induce tumors.  相似文献   

14.
白桦开花位点Flowering Locus T(FT)基因的分离及其表达   总被引:3,自引:0,他引:3  
FT及其同源基因在促进植物成花和发育阶段转变过程中起重要作用。应用RT-PCR和RACE技术分离了白桦FT基因的cDNA,全长为928 bp,其开放阅读框为525 bp,编码174个氨基酸。预测的蛋白质分子量为19.6 kDa,理论等电点为7.73。该预测蛋白序列含有保守的PEBP蛋白结构域,命名为BplFT,并在GenBank注册,登录号为JQ409561。该基因序列同其它16种植物的相似性为74%~93%,其中与无花果(Ficus carica)的相似度最高为93%,与拟南芥(Arabidopsis thaliana)的相似度最低为74%,并构建了该基因序列的进化树。通过qRT-PCR的方法检测BplFT基因在白桦不同时期不同组织中的转录表达,在营养器官的表达高于花器官,成熟组织要高于幼嫩的组织,在成熟茎中的表达量最高,推测BplFT基因在成熟的营养器官发育中起重要作用,并可能参与调控次生细胞壁的形成。另外,选择了白桦雄花序突变体进行该基因的转录表达分析,该基因在突变体雌花序、雄花序、幼叶及幼茎中均为上调表达,预示着BplFT基因不仅仅参与营养组织发育,在花器官发育中也具有一定的作用。  相似文献   

15.
During the course of characterizing fragments bound to an Arabidopsisfloral homeotic protein AGAMOUS in vivo, a gene encoding a putativeserine/threonine protein kinase was found on one of the fragments.The deduced 426 amino acid residues of the gene, named APK2a,are 65% identical to a previously reported Arabidopsisserine/threonineprotein kinase, APKla. The gene is composed of 6 exons and mapsat 10 cM from the upper end of chromosome 1. Northern hybridizationexperiments indicated that the gene is strongly expressed inleaves, moderately in roots, and very weakly in flowers. Furtherin situ analysis of the expression in floral buds showed thatthe APK2a gene is expressed at pedicels, is not expressed atthe floral organ primordia of wild type floral buds, but ismoderately expressed in the floral organ primordia of the agamousmutant. In vitro binding assay suggests that the AGAMOUS proteinbinds to a sequence similar to, but different from, the knownMADS-binding consensus sequences, the CArG box, located 3' downstreamof the APK2a gene. These results suggest that APK2a gene expressionis negatively regulated by the AG protein. A close homologue of the APK2a gene, named APK2b, was also isolatedfrom the Arabidopsis cDNA library. The expression pattern ofthe APK2b gene differs from that of APK2a. It is strongly expressedin leaves, moderately in flowers, and weakly in roots. 4Present address: Biomolecular Engineering Research Institute,6-2-3, Fruedai, Suita, Osaka, 565 Japan.  相似文献   

16.
Nucleotide sequence of a flower-specific MADS box cDNA clone from orchid   总被引:6,自引:0,他引:6  
An orchid (Aranda deborah) mature flower cDNA library was screened with an agamous cDNA probe from Arabidopsis. One positive clone for agamous gene was isolated, cloned and sequenced. This cDNA clone (om1) has a full length open reading frame of 750 bp corresponding to 250 amino acid residues. Comparison of om1 MADS box with that of its counterparts in tomato and Arabidopisis reveals significantly high homology (>95%). Northern analysis indicated this gene is expressed in mature flowers and not in young developing inflorescences or young floral buds. In the mature flowers, it is only expressed in petals and weakly in sepals but not in the column (gynostemium).  相似文献   

17.
During their life cycle, higher plants pass through a series of growth phases that are characterized by the production of morphologically distinct vegetative and reproductive organs and by different growth patterns. Three major phases have been described in Arabidopsis: juvenile vegetative, adult vegetative, and reproductive. In this report we describe a novel, phase-specific mutant in Arabidopsis, compact inflorescence (cif). The most apparent aspect of the cif phenotype is a strong reduction in the elongation of internodes in the inflorescence, resulting in the formation of a floral cluster at the apical end of all reproductive shoots. Elongation and expansion of adult vegetative rosette leaves are also compromised in mutant plants. The onset of the cif trait correlates closely with morphological changes marking the phase transition from juvenile to adult, and mutant plants produce normal flowers and are fully fertile. Hence the cif phenotype appears to be adult vegetative phase-specific. Histological sections of mutant inflorescence internodes indicate normal tissue specification, but reduced cell elongation compared to wild-type. compact inflorescence is inherited as a two-gene trait involving the action of a recessive and a dominant locus. These two cif genes appear to be key components of a growth regulatory pathway that is closely linked to phase change, and specifies critical aspects of plant growth and architecture including inflorescence internode length.  相似文献   

18.
A new fld mutant allele, fld-2, which significantly delayed flowering, was isolated and characterized in Arabidopsis thaliana. Even under long-day conditions after more than 100 days in the greenhouse, the majority of fld-2 mutant plants had not bolted. In addition, mutant inflorescences produced more than 10 co-florescences that were subtended by a high number of rosette-like leaves before giving rise to flowers. The late-flowering phenotype of the fld-2 mutation could be partially overcome by both vernalization and GA treatment but it was not influenced by 5-azaC treatment. Phenotypic analyses of double mutants indicated that fld-2 is epistatic to early flowering mutants elf1, elf2 and elf3. In addition, fld-2 could enhance vegetative characteristics in embryonic flower 1 (emf1) mutants by causing many small sessile leaves in fld-2 emf1 double mutants. The relief of the terminal flower 1 (tfl1) mutant phenotype in fld-2 tfl1 double mutants, and the enhancement of leafy (lfy) and apetala1 (ap1) mutant phenotypes in fld-2 lfy and fld-2 ap1 double mutants, suggest that FLD is also likely to be involved in the floral transition. Our results strongly suggest that the FLD gene plays a key role in regulating the reproductive competence of the shoot and results in different developmental phase transitions in Arabidopsis.  相似文献   

19.
Hemoglobin is essential for normal growth of Arabidopsis organs   总被引:1,自引:0,他引:1  
In Arabidopsis thaliana , the class I hemoglobin AHb1 is transiently expressed in the hydathodes of leaves and in floral buds from young inflorescences. Nitric oxide (NO) accumulates to high levels in these organs when AHb1 is silenced, indicating an important role in metabolizing NO. AHb1 -silenced lines are viable but show a mutant phenotype affecting the regions where AHb1 is expressed. Arabidopsis lines with an insertional knockout or overexpression of AHb2, a class II 3-on-3 hemoglobin, were generated. Seedlings overexpressing AHb2 show enhanced survival of hypoxic stress. The AHb2 knockout lines develop normally. However, when AHb2 knockout is combined with AHb1 silencing, seedlings die at an early vegetative stage suggesting that the two 3-on-3 hemoglobins, AHb1 and AHb2, together play an essential role for normal development of Arabidopsis seedlings. In conclusion, these results suggests that 3-on-3 hemoglobins apart from a role in hypoxic stress play a general role under non-stressed conditions where they are essential for normal development by controlling the level of NO which tends to accumulate in floral buds and leaf hydathodes of plants.  相似文献   

20.
The AXR1 gene of Arabidopsis is required for many auxin responses. The highly branched shoot phenotype of mature axr1 mutant plants has been taken as genetic evidence for a role of auxin in the control of shoot branching. We compared the development of lateral shoots in wild-type Columbia and axr1-12 plants. In the wild type, the pattern of lateral shoot development depends on the developmental stage of the plant. During prolonged vegetative growth, axillary shoots arise and develop in a basal-apical sequence. After floral transition, axillary shoots arise rapidly along the primary shoot axis and grow out to form lateral inflorescences in an apical-basal sequence. For both patterns, the axr1 mutation does not affect the timing of axillary meristem formation; however, subsequent lateral shoot development proceeds more rapidly in axr1 plants. The outgrowth of lateral inflorescences from excised cauline nodes of wild-type plants is inhibited by apical auxin. axr1-12 nodes are resistant to this inhibition. These results provide evidence for common control of axillary growth in both patterns, and suggest a role for auxin during the late stages of axillary shoot development following the formation of the axillary bud and several axillary leaf primordia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号