首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
2.
To examine the mechanism underlying the reproductive development in monocarpic plants, we screened for mutants that exhibit premature cessation of inflorescence growth in Arabidopsis. We identified a novel mutant line that exhibited earlier cessation of flower formation and inflorescence stem elongation. This mutant also exhibited accelerated rosette leaf senescence after the cessation of the inflorescence growth. We designated the mutant fireworks (fiw) because flowers and siliques were clustered at the top of the fiw inflorescence. The fiw mutation was a single, recessive mutation and mapped on the lower part of chromosome 4. The fiw phenotype was not observable during vegetative growth, but the inflorescence growth was arrested more than 7 d earlier than the wild type (WT). Microscopic observation revealed that the fiw apical meristem was structurally preserved. The premature arrest of growth was observed not only in the primary inflorescence but also in the lateral inflorescence, which is consistent with the global proliferative arrest observed later in WT. Regardless of such dramatic phenotypic features, the fiw plants bore normal flowers and set fully matured siliques.  相似文献   

3.
The shape of the inflorescence in Arabidopsis thaliana ecotype Columbia is a raceme with individual flowers developing acropetally. The ecotype Landsberg harboring the erecta (er) mutation shows a corymb-like inflorescence, namely a compact inflorescence with a flattened arrangement of flower buds at the tip. To gain insight into inflorescence development, we previously isolated corymb-like inflorescence mutants, named corymbosa1 (crm1), and found that the corymb-like inflorescence in crm1-1 was due to reduced cell elongation of pedicels and stem internodes. Double mutants of crm1 with er and crm2, and crm1-1 crm2-1 er-105 triple mutants show an additive phenotype. crm1-1 is caused by a mutation in BIG, which is required for polar auxin transport. CRM1/BIG is expressed in inflorescence meristems, floral meristems and vascular tissues. We analyzed a collection of 12 reduced lateral root formation (rlr) mutants, which are allelic to crm1-1, and categorized the mutants into three classes, depending on the plant developmental defects. Although all 12 alleles had new stop codons, the phenotype of heterozygous crm1-1/doc1-1 and Northern blotting suggest that new crm1/big mutant alleles are hypomorphic. Auxin-responsive DR5rev::GFP expression was decreased in crm1-1 vasculature of pedicels and stem internodes. PINFORMED1 (PIN1) and CRM1/BIG are expressed in vasculature of pedicels and stem internodes. The severity of corymb-like inflorescence in crm1/big mutants correlated with increased levels of PIN1. Our results suggest that CRM1/BIG controls the elongation of the pedicels and stem internodes through auxin action.  相似文献   

4.
5.
6.
The rice peter pan syndrome-1 (pps-1) mutant shows a prolonged juvenile phase and early flowering. Although the early vegetative phase and flowering time of pps-1 have been closely examined, the phenotypes in the late vegetative and reproductive phases are not yet well understood. In the ninth leaf blade of pps-1, the relative length of the midrib was comparable to the sixth leaf blade of wild-type. Moreover, pps-1 had a small inflorescence meristem and small panicles. These phenotypes indicate that in pps-1 the juvenile phase coexists with the late vegetative phase, resulting in small panicles. Gibberellin is known to promote the juvenile-adult phase transition. d18-k is dwarf and has a prolonged juvenile phase. Double mutant (d18-k pps-1) showed the same phenotype as the pps-1, indicating that PPS is upstream of GA biosynthetic genes.  相似文献   

7.
Smith HM  Hake S 《The Plant cell》2003,15(8):1717-1727
Plant architecture results from the activity of the shoot apical meristem, which initiates leaves, internodes, and axillary meristems. KNOTTED1-like homeobox (KNOX) genes are expressed in specific patterns in the shoot apical meristem and play important roles in plant architecture. KNOX proteins interact with BEL1-like (BELL) homeodomain proteins and together bind a target sequence with high affinity. We have obtained a mutation in one of the Arabidopsis BELL genes, PENNYWISE (PNY), that appears phenotypically similar to the KNOX mutant brevipedicellus (bp). Both bp and pny have randomly shorter internodes and display a slight increase in the number of axillary branches. The double mutant shows a synergistic phenotype of extremely short internodes interspersed with long internodes and increased branching. PNY is expressed in inflorescence and floral meristems and overlaps with BP in a discrete domain of the inflorescence meristem where we propose the internode is patterned. The physical association of the PNY and BP proteins suggests that they participate in a complex that regulates early patterning events in the inflorescence meristem.  相似文献   

8.
Mazzella MA  Bertero D  Casal JJ 《Planta》2000,210(3):497-501
 Vegetative plants of Arabidopsis thaliana (L.) Heynh. form a compact rosette of leaves in which internode growth is virtually arrested. Rapid extension of the internodes occurs after flower buds are present in the reproductive apex. Under natural radiation, continuous light from fluorescent lamps, or short photoperiods of light from fluorescent lamps, plants of the phyB cry1 double mutant (lacking both phytochrome B and cryptochrome 1) did not form normal rosettes because all the internodes showed some degree of elongation. Internode elongation was weak in the phyB single mutant and absent in the cry1 mutant, indicating redundancy between phytochrome B and cryptochrome 1. The absence of phytochrome A caused no effects. The failure to form normal rosettes was conditional because internode elongation was arrested at low temperatures in all the mutant combinations. In contrast, the temperature dependence of phytochrome B and cryptochrome 1 effects on hypocotyl growth was weak. The elongation of the internodes in phyB cry1 was not accompanied by early flowering as showed by the lack of effects on the final number of leaves. Apex dissection indicated that in phyB cry1 double mutants internode elongation anticipated the transition from the vegetative to the reproductive stage. Thus, stem growth in Arabidopsis thaliana is not fully dependent on the program of reproductive development. Received: 2 June 1999 / Accepted: 13 August 1999  相似文献   

9.
In this study we investigated Arabidopsis thaliana (L.) Heynh. inflorescence development by characterizing morphological changes at the shoot apex during the transition to flowering. Sixteen-hour photoperiods were used to synchronously induce flowering in vegetative plants grown for 30 d in non-inductive 8-h photoperiods. During the first inductive cycle, the shoot apical meristem ceased producing leaf primordia and began to produce flower primordia. The differentiation of paraclades (axillary flowering shoots), however, did not occur until after the initiation of multiple flower primordia from the shoot apical meristem. Paraclades were produced by the basipetal activation of buds from the axils of leaf primordia which had been initiated prior to photoperiodic induction. Concurrent with the activation of paraclades was the partial suppression of paraclade-associated leaf primordia, which became bract leaves. The suppression of bract-leaf primordia and the abrupt initiation of flower primordia during the first inductive photoperiod is indicative of a single phase change during the transition to flowering in photoperiodically induced Arabidopsis. Morphogenetic changes characteristic of the transition to flowering in plants grown continuously in 16-h photoperiods were qualitatively equivalent to the changes observed in plants which were photoperiodically induced after 30 d. These results suggest that Arabidopsis has only two phases of development, a vegetative phase and a reproductive phase; and that the production of flower primordia, the differentiation of paraclades from the axils of pre-existing leaf primordia and the elongation of internodes all occur during the reproductive phase.  相似文献   

10.
The abnormal inflorescence meristem1 (aim1) mutation affects inflorescence and floral development in Arabidopsis. After the transition to reproductive growth, the aim1 inflorescence meristem becomes disorganized, producing abnormal floral meristems and resulting in plants with severely reduced fertility. The derived amino acid sequence of AIM1 shows extensive similarity to the cucumber multifunctional protein involved in beta-oxidation of fatty acids, which possesses l-3-hydroxyacyl-CoA hydrolyase, l-3-hydroxyacyl-dehydrogenase, d-3-hydroxyacyl-CoA epimerase, and Delta(3), Delta(2)-enoyl-CoA isomerase activities. A defect in beta-oxidation has been confirmed by demonstrating the resistance of the aim1 mutant to 2,4-diphenoxybutyric acid, which is converted to the herbicide 2,4-D by the beta-oxidation pathway. In addition, the loss of AIM1 alters the fatty acid composition of the mature adult plant.  相似文献   

11.
We have identified a novel petunia MADS box gene, PETUNIA FLOWERING GENE (PFG), which is involved in the transition from vegetative to reproductive development. PFG is expressed in the entire plant except stamens, roots and seedlings. Highest expression levels of PFG are found in vegetative and inflorescence meristems. Inhibition of PFG expression in transgenic plants, using a cosuppression strategy, resulted in a unique nonflowering phenotype. Homozygous pfg cosuppression plants are blocked in the formation of inflorescences and maintain vegetative growth. In these mutants, the expression of both PFG and the MADS box gene FLORAL BINDING PROTEIN26 (FBP26), the putative petunia homolog of SQUAMOSA from Antirrhinum, are down-regulated. In hemizygous pfg cosuppression plants initially a few flowers are formed, after which the meristem reverts to the vegetative phase. This reverted phenotype suggests that PFG, besides being required for floral transition, is also required to maintain the reproductive identity after this transition. The position of PFG in the hierarchy of genes controlling floral meristem development was investigated using a double mutant of the floral meristem identity mutant aberrant leaf and flower (alf) and the pfg cosuppression mutant. This analysis revealed that the pfg cosuppression phenotype is epistatic to the alf mutant phenotype, indicating that PFG acts early in the transition to flowering. These results suggest that the petunia MADS box gene, PFG, functions as an inflorescence meristem identity gene required for the transition of the vegetative shoot apex to the reproductive phase and the maintenance of reproductive identity.  相似文献   

12.
Postembryonic shoot development in maize (Zea mays L.) is divided into a juvenile vegetative phase, an adult vegetative phase, and a reproductive phase that differ in the expression of many morphological traits. A reduction in the endogenous levels of bioactive gibberellins (GAs) conditioned by any one of the dwarf1, dwarf3, dwarf5, or another ear1 mutations in maize delays the transition from juvenile vegetative to adult vegetative development and from adult vegetative to reproductive development. Mutant plants cease producing juvenile traits (e.g. epicuticular wax) and begin producing adult traits (e.g. epidermal hairs) later than wild-type plants. They also cease producing leaves and begin producing reproductive structures later than wild-type plants. These mutations greatly enhance most aspects of the phenotype of Teopod1 and Teopod2, suggesting that GAs suppress part but not all of the Teopod phenotype. Application of GA3 to Teopod2 mutants and Teopod1, dwarf3 double mutants confirms this result. We conclude that GAs act in conjunction with several other factors to promote both vegetative and reproductive maturation but affect different developmental phases unequally. Furthermore, the GAs that regulate vegetative and reproductive maturation, like those responsible for stem elongation, are downstream of GA20 in the GA biosynthetic pathway.  相似文献   

13.
A lettuce (Lactuca sativa L.) mutant that exhibits a procumbent growth habit was identified and characterized. In two wild type (WT) genetic backgrounds, segregation patterns revealed that the mutant phenotype was controlled by a recessive allele at a single locus, which was designated weary. Hypocotyls and inflorescence stems of plants homozygous for the weary allele exhibited reduced gravitropic responses compared with WT plants, but roots exhibited normal gravitropism. Microscopic analysis revealed differences in the radial distribution of amyloplasts in hypocotyl and inflorescence stem cells of weary and WT plants. Amyloplasts occurred in a single layer of endodermal cells in WT hypocotyls and inflorescence stems. By contrast, amyloplasts were observed in several layers of cortical cells in weary hypocotyls, and weary inflorescence stem cells lacked amyloplasts entirely. These results are consistent with the proposed role of sedimenting amyloplasts in shoot gravitropism of higher plants. The phenotype associated with the weary mutant is similar to that described for the Arabidopsis mutant sgr1/scr, which is defective in radial patterning and gravitropism.  相似文献   

14.
15.
16.
Organogenesis in plants is controlled by meristems. Axillary meristems, which give rise to branches and flowers, play a critical role in plant architecture and reproduction. Maize (Zea mays) and rice (Oryza sativa) have additional types of axillary meristems in the inflorescence compared to Arabidopsis (Arabidopsis thaliana) and thus provide an excellent model system to study axillary meristem initiation. Previously, we characterized the barren inflorescence2 (bif2) mutant in maize and showed that bif2 plays a key role in axillary meristem and lateral primordia initiation in the inflorescence. In this article, we cloned bif2 by transposon tagging. Isolation of bif2-like genes from seven other grasses, along with phylogenetic analysis, showed that bif2 is a co-ortholog of PINOID (PID), which regulates auxin transport in Arabidopsis. Expression analysis showed that bif2 is expressed in all axillary meristems and lateral primordia during inflorescence and vegetative development in maize and rice. Further phenotypic analysis of bif2 mutants in maize illustrates additional roles of bif2 during vegetative development. We propose that bif2/PID sequence and expression are conserved between grasses and Arabidopsis, attesting to the important role they play in development. We provide further support that bif2, and by analogy PID, is required for initiation of both axillary meristems and lateral primordia.  相似文献   

17.
EMF genes regulate Arabidopsis inflorescence development.   总被引:10,自引:1,他引:9       下载免费PDF全文
L Chen  J C Cheng  L Castle    Z R Sung 《The Plant cell》1997,9(11):2011-2024
Mutations in EMBRYONIC FLOWER (EMF) genes EMF1 and EMF2 abolish rosette development, and the mutants produce either a much reduced inflorescence or a transformed flower. These mutant characteristics suggest a repressive effect of EMF activities on reproductive development. To investigate the role of EMF genes in regulating reproductive development, we studied the relationship between EMF genes and the genes regulating inflorescence and flower development. We found that APETALA1 and AGAMOUS promoters were activated in germinating emf seedlings, suggesting that these genes may normally be suppressed in wild-type seedlings in which EMF activities are high. The phenotype of double mutants combining emf1-2 and apetala1, apetala2, leafy1, apetala1 cauliflower, and terminal flower1 showed that emf1-2 is epistatic in all cases, suggesting that EMF genes act downstream from these genes in mediating the inflorescence-to-flower transition. Constitutive expression of LEAFY in weak emf1, but not emf2, mutants increased the severity of the emf phenotype, indicating an inhibition of EMF activity by LEAFY, as was deduced from double mutant analysis. These results suggest that a mechanism involving a reciprocal negative regulation between the EMF genes and the floral genes regulates Arabidopsis inflorescence development.  相似文献   

18.
19.
A method for inflorescence proliferation   总被引:4,自引:0,他引:4  
Most perennial plants must pass through a long juvenile phase of vegetative development before they are capable of flowering. We have developed a method specifying inflorescence proliferation to bypass juvenility and maintain the adult phase. Bamboo ( Bambusa edulis) inflorescences were amplified by incubation in Murashige and Skoog medium supplemented with 0.1 mg/l thidiazuron. Mutant albino inflorescences also proliferated in this medium. This method is equally effective with dicotyledonous plants. Ginseng ( Panax ginseng) buds were incubated in B5 medium supplemented with 1 mg/l benzyladenine and 1 mg/l gibberellic acid; new inflorescences developed from the base of the explants. Ginseng flowers were parthenocarpic and some of the fruit proliferated in vitro. Using the inflorescences as the material of somatic embryogenesis, we demonstrated that these were not mutations. The regenerated plants still had a juvenile phase and grew normally.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号