首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
利用从菠菜(Spinacia oleracea L.)叶绿体分离、纯化出的缺失膜脂的细胞色素b6f蛋白复合体(Cyt b6f)制剂与从菠菜类囊体分离、纯化的膜脂进行体外重组,检测了不同膜脂对Cyt b6f催化电子传递活性的影响.结果表明:被检测的5种膜脂,即单半乳糖基甘油二酯(MGDG)、双半乳糖基甘油二酯(DGDG)、磷脂酰胆碱(PC)、磷脂酰甘油(PG)和硫代异鼠李糖基甘油二酯(SQDG)对Cyt b6f催化电子传递的活性均有明显的促进作用,但促进的程度各不相同,这可能与这些膜脂分子的带电性质密切相关.不带电荷的MGDG和DGDG及分子整体呈电中性的PC对促进Cyt b6f催化电子传递的活性非常有效,可分别使其活性提高89%、75%和77%;而带负电荷的PG和SQDG对活性的促进作用则相对较弱,仅可使其活性分别提高43%和26%.  相似文献   

2.
采用自旋捕捉电子顺磁共振技术研究了强光诱导下菠菜Cyt b6f中单线态氧(1O2*)产生和清除的分子机制,结果表明:在强光照射和有氧条件下,缺失Rieske Fe-S蛋白的Cytb6f和分离的Rieske Fe-S蛋白溶液中都检测到1O2*的产生,这证明Chla和Rieske Fe-S蛋白都是菠菜Cytb6f中光诱导1O2*产生的位点,而Chla是1O2*产生的主要部位。采用波长为675 nm的红光选择性激发Cytb6f中的Chla时,也检测到1O2*的产生,进一步支持了上述结论。此外,外加天然抗氧化物质,如抗坏血酸、谷胱甘肽、L-组氨酸和β-胡萝卜素,可清除系统中产生的1O2*。这很可能是菠菜Cytb6f中一种保护底物抵抗单线态氧光氧化的保护机制。  相似文献   

3.
光系统II蛋白磷酸化及其生理意义   总被引:4,自引:0,他引:4  
蛋白磷酸化修饰在几乎所有的生命活动中都起重要的调节作用.该文结合作者研究组的研究工作,概述了光系统II(PS II)蛋白磷酸化的调节及其生理功能.PS II复合体中的核心组分D1、D2、CP43和PsbH蛋白以及外周捕光天线(LHC II)蛋白都可以发生磷酸化.PS II蛋白磷酸化受质醌(PQ)的氧化还原状态、细胞色素b6f (Cyt b6f ) 和硫氧还蛋白以及光调节.PS II蛋白磷酸化可以调节激发能在两种光系统(PS I和PS II)之间的分配,减轻光胁迫对PS II的压力,保护核心蛋白免于光破坏,稳定PS II复合体的结构.  相似文献   

4.
李新国  孟庆伟 《植物学报》2003,20(6):680-687
Cyt b559是由两条多肽,即α_、β_两个亚基组成的一种血红蛋白,是光系统Ⅱ(PSⅡ)蛋白复合体必不可少的组分。简要介绍了Cyt b559的分子组成及其氧化还原特性。重点阐述了在光抑制条件下Cyt b559对PSⅡ反应中心的可能保护机制和由Cyt b559参与的围绕PSⅡ的循环电子传递。  相似文献   

5.
Cyt b559是由两条多肽,即α、β-两个亚基组成的一种血红蛋白,是光系统Ⅱ(PSⅡ)蛋白复合体必不可少的组分。简要介绍了Cyt b559的分子组成及其氧化还原特性。重点阐述了在光抑制条件下cyt b559对PSⅡ反应中心的可能保护机制和由Cyt b559参与的围绕PSⅡ的循环电子传递。  相似文献   

6.
B型细胞周期蛋白(Cyclin B)是细胞G2期向M期转化的重要调节因子. 家蚕基因组数据分析表明, 家蚕有2个Cyclin B基因, 即BmCyclin B和BmCyclin B3. 利用家蚕EST数据, 成功克隆了家蚕Cyclin B3基因(EU074796), 该基因全长1665 bp, ORF长1536 bp, 由6个内含子和7个外显子构成, 编码511个氨基酸, 含有1个蛋白破坏盒和2个周期蛋白盒, 预测分子量57.8 kD. 家蚕卵巢细胞系BmN-SWU1的BmCyclin B和BmCyclin B3基因RNA干涉结果表明, BmCyclin B和BmCyclin B3是家蚕细胞完成细胞周期进程所必需的, 二者干涉后均能导致细胞周期阻滞于G2/M期, 抑制细胞的增殖.  相似文献   

7.
据报道, 细胞色素b6f蛋白复合体(cytochrome b6f, Cyt b6f)中叶绿素a (chlorophyll a, Chl a)分子的单线激发态寿命(或荧光寿命)短于甲醇中游离Chl a的单线激发态寿命(~4 ns), 但是文献报道不同来源的Cyt b6f中Chl a单线激发态寿命并不一致(一种为200 ps左右, 一种结果为600 ps左右). 本研究证明, 不同来源Cyt b6f中Chl a的单线激发态寿命测定结果的不同, 与Cyt b6f来源无关, 而与溶解膜蛋白的去垢剂—八烷基葡萄糖苷 (n-Octyl β-D-glucopyranoside, β-OG)和十二烷基麦芽糖苷(n-Dodecylβ-D-maltoside, DDM)有关. 溶解在DDM中的样品和溶解在b-OG中的样品相比, 其Chl a的荧光产率低, 强光照射下抗光破坏的能力强, 单线激发态的寿命更短(~200 ps). 显然, 溶解在DDM中样品的Chl a单线激发态的寿命更接近体内真实的情况.  相似文献   

8.
整合素蛋白αⅡbβ3是血小板上的一种钙依赖性膜受体,其胞外结构域可与含有RGD序列的肽链特异结合.通过将含有NTA-DOGS的磷脂单分子层膜转移到50 nm厚的金膜上,制备了一种含有NTA头部的表面等离激元共振(SPR)传感器敏感膜.设计并合成了含有6个组氨酸和RGD基团的His-tagged短肽P1,并利用SPR生物传感器,对整合素蛋白与含有RGD配基的支撑平面膜的特异相互作用以及Ca2+、Mn2+对该相互作用的影响进行了研究.结果表明,NTA敏感膜能很好地将P1锚定在支撑平面膜表面,并能够保证P1维持一个有效的定向.将Ca2+从低结合位点去除或加入Mn2+都能够增加整合素蛋白的配基结合活性.二价阳离子对整合素蛋白配基结合能力的调节作用,可能在整合素发挥其生理功能的过程中具有重要的意义.  相似文献   

9.
Mg2+对阿霉素引起心肌线粒体F1F0变化的保护   总被引:4,自引:0,他引:4  
抗肿瘤药物阿霉素(ADM)对心肌线粒体F1F0-复合体呈现抑制而对F1-ATPase无抑制,这表明ADM可能是通过膜脂起作用的,适当浓度Mg2+能降低ADM对复合体的抑制.经 31P-NMR和标记荧光探针NBD-PE,DPH,MC-540以及内源荧光等的测定,结果表明ADM可能首先通过诱导F1F0膜脂形成非双层脂结构,继而影响了膜脂的堆积程度和流动性,进而引起F1F0-复合体酶蛋白构象的改变,最终导致酶活力的降低.Mg2+则可能由于与ADM竞争与心磷脂的结合,而对ADM引起F1F0的变化产生保护作用.  相似文献   

10.
光合类囊体膜主要由光系统Ⅱ、细胞色素b6f复合物、光系统Ⅰ以及ATP合酶4个超分子复合物组成.利用分裂泛素化酵母双杂交系统研究光合类囊体膜蛋白间的相互作用.将叶绿体psbA基因编码的D1蛋白作为诱饵蛋白,以叶绿体基因psbD编码的D2蛋白、petB编码的Cytb6蛋白作为靶蛋白,分别共转化酵母菌株后进行相互作用分析.实验结果表明,诱饵蛋白D1能与来源于同一复合物光系统Ⅱ的D2蛋白发生相互作用,而与来源于细胞色素b6f复合物的Cytb6蛋白没有互作.这一结果表明,分裂泛素化酵母双杂交系统可以用于检测光合膜蛋白间的相互作用,从而为研究光合膜蛋白生物发生的调控机理提供一个有效的工具.  相似文献   

11.
A.L. Ducluzeau 《BBA》2008,1777(9):1140-1146
Heliobacteria have a Rieske/cytochrome b complex composed of a Rieske protein, a cytochrome b6, a subunit IV and a di-heme cytochrome c. The overall structure of the complex seems close to the b6f complex from cyanobacteria and chloroplasts to the exception of the di-heme cytochrome. We show here by biochemical and biophysical studies that a heme ci is covalently attached to the Rieske/cytochrome b complex from Heliobacteria. We studied the EPR signature of this heme in two different species, Heliobacterium modesticaldum and Heliobacillus mobilis. In contrast to the case of b6f complex, a strong axial ligand to the heme is present, most probably a protonatable amino acid residue.  相似文献   

12.
To understand the roles of negatively surface charged residues, the cytochrome b5 (Cyt b5) E48A/D60A mutant was constructed. UV-visible and CD spectra confirmed that the mutation did not cause overall structural changes of the protein. The mutant presents an unexpected high stability toward the thermal and denaturant compared with the wild type Cyt b5, which shows that these surface charged residues can influence the interactions between the heme b group and the polypeptide chain. Functional properties were clarified through the electron transfer reactions between Cyt b5 and Cyt c. The driving force of the electron transfer reactions is conservative. Although the association constant of Cyt b5 E48A/D60A with Cyt c is much lower than that of the wild type Cyt b5, their electron transfer rate constants do not differ significantly. The results show that these surface charged residues play important roles in regulating both the stability and functional properties of Cyt b5.  相似文献   

13.
Electron paramagnetic resonance (EPR) spectroscopy was used to detect the light-induced formation of singlet oxygen (1O2*) in the intact and the Rieske-depleted cytochrome b6f complexes (Cyt b6f) from Bryopsis corticulans, as well as in the isolated Rieske Fe–S protein. It is shown that, under white-light illumination and aerobic conditions, chlorophyll a (Chl a) bound in the intact Cyt b6f can be bleached by light-induced 1O2*, and that the 1O2* production can be promoted by D2O or scavenged by extraneous antioxidants such as l-histidine, ascorbate, β-carotene and glutathione. Under similar experimental conditions, 1O2* was also detected in the Rieske-depleted Cyt b6f complex, but not in the isolated Rieske Fe–S protein. The results prove that Chl a cofactor, rather than Rieske Fe–S protein, is the specific site of 1O2* formation, a conclusion which draws further support from the generation of 1O2* with selective excitation of Chl a using monocolor red light.  相似文献   

14.
This study provides evidence for enhanced electron flow from the stromal compartment of the photosynthetic membranes to P700+ via the cytochrome b6/f complex (Cyt b6/f) in leaves of Cucumis sativus L. submitted to chilling-induced photoinhibition. The above is deduced from the P700 oxidation–reduction kinetics studied in the absence of linear electron transport from water to NADP+, cyclic electron transfer mediated through the Q-cycle of Cyt b6/f and charge recombination in photosystem I (PSI). The segregation of these pathways for P700+ rereduction were achieved by the use of a 50-ms multiple turnover white flash or a strong pulse of white or far-red illumination together with inhibitors. In cucumber leaves, chilling-induced photoinhibition resulted in ∼20% loss of photo-oxidizible P700. The measurement of P700+ was greatly limited by the turnover of cyclic processes in the absence of the linear mode of electron transport as electrons were rapidly transferred to the smaller pool of P700+. The above is explained by integrating the recent model of the cyclic electron flow in C3 plants based on the Cyt b6/f structural data [Joliot and Joliot (2006) Biochim Biophys Acta 1757:362–368] and a photoprotective function elicited by a low NADP+/NAD(P)H ratio [Rajagopal et al. (2003) Biochemistry 42:11839–11845]. Over-reduction of the photosynthetic apparatus results in the accumulation of NAD(P)H in vivo to prevent NADP+-induced reversible conformational changes in PSI and its extensive damage. As the ferredoxin:NADP reductase is fully reduced under these conditions, even in the absence of PSII electron transport, the reduced ferredoxin generated during illumination binds at the stromal openings in the Cyt b6/f complex and activates cyclic electron flow. On the other hand, the excess electrons from the NAD(P)H pool are routed via the Ndh complex in a slow process to maintain moderate reduction of the plastoquinone pool and redox poise required for the operation of ferredoxin:plastoquinone reductase mediated cyclic flow.  相似文献   

15.
The singlet excited state lifetime of the chlorophyll a (Chi a) in cytochrome b6f (Cyt b6f) complex was reported to be shorter than that of free Chl a in methanol, but the value was different for Cyt b6f complexes from different sources (~200 and ~600 ps are the two measured results). The present study demonstrated that the singiet excited state lifetime is associated with the detergents n-dodecyl-β-D-maltoside (DDM) and n-octyl-β-D-glucopyranoside (β-OG), but has nothing to do with the different sources of Cyt b6f complexes. Compared with the Cyt b6f dissolved in β-OG, the Cyt b6f in DDM had a lower fluorescence yield, a lower photodegradation rate of Chl a, and a shorter lifetime of Chl a excited state. In short, the singlet excited state lifetime, ~200 ps, of the Chl a in Cyt b6f complex in DDM is closer to the true in vivo.  相似文献   

16.
Frederik A.J. Rotsaert 《BBA》2008,1777(3):239-249
We have examined the pre-steady-state kinetics and thermodynamic properties of the b hemes in variants of the yeast cytochrome bc1 complex that have mutations in the quinone reductase site (center N). Trp-30 is a highly conserved residue, forming a hydrogen bond with the propionate on the high potential b heme (bH heme). The substitution by a cysteine (W30C) lowers the redox potential of the heme and an apparent consequence is a lower rate of electron transfer between quinol and heme at center N. Leu-198 is also in close proximity to the bH heme and a L198F mutation alters the spectral properties of the heme but has only minor effects on its redox properties or the electron transfer kinetics at center N. Substitution of Met-221 by glutamine or glutamate results in the loss of a hydrophobic interaction that stabilizes the quinone ligands. Ser-20 and Gln-22 form a hydrogen-bonding network that includes His-202, one of the carbonyl groups of the ubiquinone ring, and an active-site water. A S20T mutation has long-range structural effects on center P and thermodynamic effects on both b hemes. The other mutations (M221E, M221Q, Q22E and Q22T) do not affect the ubiquinol oxidation kinetics at center P, but do modify the electron transfer reactions at center N to various extents. The pre-steady reduction kinetics suggest that these mutations alter the binding of quinone ligands at center N, possibly by widening the binding pocket and thus increasing the distance between the substrate and the bH heme. These results show that one can distinguish between the contribution of structural and thermodynamic factors to center N function.  相似文献   

17.
In order to illustrate the structural importance of proline-40 of cytochrome b5 (Cyt b5), the P40V mutant gene was constructed. Unfolding and refolding of Cyt b5 induced by methanol was investigated by means of the UV-visible spectrum, circular dichroism, and the fluorescence spectrum. Methanol denaturation of Cyt b5 is a cooperative process, that is, the heme group dissociates from the heme pocket accompanied by unfolding of the polypeptide chain both in the secondary and tertiary structures. Substitution of proline by valine reduces the stability of the mutant under methanol denaturation. The unfolding process is almost reversible by dilution. During refolding, the denatured polypeptide must be folded to a more ordered structure prior to the heme capture. Pro40 plays an important role in modulating the protein's stability. The role of tyrosine in the unfolding and refolding of Cyt b5 is evaluated for the first time. A mechanism of methanol denaturation is also proposed.  相似文献   

18.
The main cofactors involved in the oxygen evolution activity of Photosystem II (PSII) are located in two proteins, D1 (PsbA) and D2 (PsbD). In Thermosynechococcus elongatus, a thermophilic cyanobacterium, the D1 protein is encoded by either the psbA1 or the psbA3 gene, the expression of which is dependent on environmental conditions. It has been shown that the energetic properties of the PsbA1-PSII and those of the PsbA3-PSII differ significantly (Sugiura, M., Kato, Y., Takahashi, R., Suzuki, H., Watanabe, T., Noguchi, T., Rappaport, F., and Boussac, A. (2010) Biochim. Biophys. Acta 1797, 1491–1499). In this work the structural stability of PSII upon a PsbA1/PsbA3 exchange was investigated. Two deletion mutants lacking another PSII subunit, PsbJ, were constructed in strains expressing either PsbA1 or PsbA3. The PsbJ subunit is a 4-kDa transmembrane polypeptide that is surrounded by D1 (i.e. PsbA1), PsbK, and cytochrome b559 (Cyt b559) in existing three-dimensional models. It is shown that the structural properties of the PsbA3/ΔPsbJ-PSII are not significantly affected. The polypeptide contents, the Cyt b559 properties, and the proportion of PSII dimer were similar to those found for PsbA3-PSII. In contrast, in PsbA1/ΔPsbJ-PSII the stability of the dimer is greatly diminished, the EPR properties of the Cyt b559 likely indicates a decrease in its redox potential, and many other PSII subunits are lacking. These results shows that the 21-amino acid substitutions between PsbA1 and PsbA3, which appear to be mainly conservative, must include side chains that are involved in a network of interactions between PsbA and the other PSII subunits.  相似文献   

19.
The following findings concerning the structure of the cytochromeb 6 f complex and its component polypeptides, cytb 6, subunit IV and cytochromef subunit are discussed:
(1)  Comparison of the amino acid sequences of 13 and 16 cytochromeb 6 and subunit IV polypeptides, respectively, led to (a) reconsideration of the helix lengths and probable interface regions, (b) identification of two likely surface-seeking helices in cytb 6 and one in SU IV, and (c) documentation of a high degree of sequence invariance compared to the mitochondrial cytochrome. The extent of identity is particularly high (88% for conserved and pseudoconserved residues) in the segments of cytb 6 predicted to be extrinsic on then-side of the membrane.
(2)  The intramembrane attractive forces betweentrans-membrane helices that normally stabilize the packing of integral membrane proteins are relatively weak.
(3)  The complex isolated in dimeric form has been visualized, along with isolated monomer, by electron microscopy. The isolated dimer is much more active than the monomer, is the major form of the complex isolated and purified from chloroplasts, and is inferred to be a functional form in the membrane.
(4)  The isolated cytb 6 f complex contains one molecule of chlorophylla.
(5)  The structure of the 252 residue lumen-side domain of cytochromef isolated from turnip chloroplasts has been solved by X-ray diffraction analysis to a resolution of 2.3 Å.
  相似文献   

20.
Nuclear genes essential for the biogenesis of the chloroplast cytochrome b 6 f complex were identified by mutations that cause the specific loss of the complex. We describe four transposon-induced maize mutants that lack cytochrome b 6 f proteins but contain normal levels of other photosynthetic complexes. The four mutations define two nuclear genes. To identify the step at which each mutation blocks protein accumulation, mRNAs encoding each subunit were examined by Northern hybridization analysis and the rates of subunit synthesis were examined in pulse-labeling experiments. In each mutant the mRNAs encoding the known subunits of the complex were normal in size and abundance and the major subunits were synthesized at normal rates. Thus, these mutations block the biogenesis of the cytochrome b 6 f complex at a post-translational step. The two nuclear genes identified by these mutations may encode previously unknown subunits, be involved in prosthetic group synthesis or attachment, or facilitate assembly of the complex. These mutations were also used to provide evidence for the authenticity of a proposed fifth subunit of the complex and to demonstrate a role for the cytochrome b 6 f complex in protecting photosystem 11 from light-induced degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号