首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously demonstrated that the replacement of the S gene from an avirulent strain (Beaudette) of infectious bronchitis virus (IBV) with an S gene from a virulent strain (M41) resulted in a recombinant virus (BeauR-M41(S)) with the in vitro cell tropism of the virulent virus but that was still avirulent. In order to investigate whether any of the other structural or accessory genes played a role in pathogenicity we have now replaced these from the Beaudette strain with those from M41. The recombinant IBV was in effect a chimaeric virus with the replicase gene derived from Beaudette and the rest of the genome from M41. This demonstrated that it is possible to exchange a large region of the IBV genome, approximately 8.4 kb, using our transient dominant selection method. Recovery of a viable recombinant IBV also demonstrated that it is possible to interchange a complete replicase gene as we had in effect replaced the M41 replicase gene with the Beaudette derived gene. Analysis of the chimaeric virus showed that it was avirulent indicating that none of the structural or accessory genes derived from a virulent isolate of IBV were able to restore virulence and that therefore, the loss of virulence associated with the Beaudette strain resides in the replicase gene.  相似文献   

2.
We have replaced the ectodomain of the spike (S) protein of the Beaudette strain (Beau-R; apathogenic for Gallus domesticus chickens) of avian infectious bronchitis coronavirus (IBV) with that from the pathogenic M41 strain to produce recombinant IBV BeauR-M41(S). We have previously shown that this changed the tropism of the virus in vitro (R. Casais, B. Dove, D. Cavanagh, and P. Britton, J. Virol. 77:9084-9089, 2003). Herein we have assessed the pathogenicity and immunogenicity of BeauR-M41(S). There were no consistent differences in pathogenicity between the recombinant BeauR-M41(S) and its apathogenic parent Beau-R (based on snicking, nasal discharge, wheezing, watery eyes, rales, and ciliostasis in trachea), and both replicated poorly in trachea and nose compared to M41; the S protein from the pathogenic M41 had not altered the apathogenic nature of Beau-R. Both Beau-R and BeauR-M41(S) induced protection against challenge with M41 as assessed by absence of recovery of challenge virus and nasal exudate. With regard to snicking and ciliostasis, BeauR-M41(S) induced greater protection (seven out of nine chicks [77%]; assessed by ciliostasis) than Beau-R (one out of nine; 11%) but less than M41 (100%). The greater protection induced by BeauR-M41(S) against M41 may be related to the ectodomain of the spike protein of Beau-R differing from that of M41 by 4.1%; a small number of epitopes on the S protein may play a disproportionate role in the induction of immunity. The results are promising for the prospects of S-gene exchange for IBV vaccine development.  相似文献   

3.
A recombinant infectious bronchitis virus (IBV), BeauR-M41(S), was generated using our reverse genetics system (R. Casais, V. Thiel, S. G. Siddell, D. Cavanagh, and P. Britton, J. Virol. 75:12359-12369, 2001), in which the ectodomain region of the spike gene from IBV M41-CK replaced the corresponding region of the IBV Beaudette genome. BeauR-M41(S) acquired the same cell tropism phenotype as IBV M41-CK in four different cell types, demonstrating that the IBV spike glycoprotein is a determinant of cell tropism.  相似文献   

4.
We have shown previously that replacement of the spike (S) gene of the apathogenic IBV strain Beau-R with that from the pathogenic strain of the same serotype, M41, resulted in an apathogenic virus, BeauR-M41(S), that conferred protection against challenge with M41. We have constructed a recombinant IBV, BeauR-4/91(S), with the genetic backbone of Beau-R but expressing the spike protein of the pathogenic IBV strain 4/91(UK), which belongs to a different serogroup as Beaudette or M41. Similar to our previous findings with BeauR-M41(S), clinical signs observations showed that the S gene of the pathogenic 4/91 virus did not confer pathogenicity to the rIBV BeauR-4/91(S). Furthermore, protection studies showed there was homologous protection; BeauR-4/91(S) conferred protection against challenge with wild type 4/91 virus as shown by the absence of clinical signs, IBV RNA assessed by qRT-PCR and the fact that no virus was isolated from tracheas removed from birds primarily infected with BeauR-4/91(S) and challenged with IBV 4/91(UK). A degree of heterologous protection against M41 challenge was observed, albeit at a lower level.Our results confirm and extend our previous findings and conclusions that swapping of the ectodomain of the S protein is a precise and effective way of generating genetically defined candidate IBV vaccines.  相似文献   

5.
The binding of viruses to host cells is the first step in determining tropism and pathogenicity. While avian infectious bronchitis coronavirus (IBV) infection and avian influenza A virus (IAV) infection both depend on α2,3-linked sialic acids, the host tropism of IBV is restricted compared to that of IAV. Here we investigated whether the interaction between the viral attachment proteins and the host could explain these differences by using recombinant spike domains (S1) of IBV strains with different pathogenicities, as well as the hemagglutinin (HA) protein of IAV H5N1. Protein histochemistry showed that S1 of IBV strain M41 and HA of IAV subtype H5N1 displayed sialic acid-dependent binding to chicken respiratory tract tissue. However, while HA bound with high avidity to a broad range of α2,3-linked sialylated glycans, M41 S1 recognized only one particular α2,3-linked disialoside in a glycan array. When comparing the binding of recombinant IBV S1 proteins derived from IBV strains with known differences in tissue tropism and pathogenicity, we observed that while M41 S1 displayed binding to cilia and goblet cells of the chicken respiratory tract, S1 derived from the vaccine strain H120 or the nonvirulent Beaudette strain had reduced or no binding to chicken tissues, respectively, in agreement with the reduced abilities of these viruses to replicate in vivo. While the S1 protein derived from the nephropathogenic IBV strain B1648 also hardly displayed binding to respiratory tract cells, distinct binding to kidney cells was observed, but only after the removal of sialic acid from S1. In conclusion, our data demonstrate that the attachment patterns of the IBV S proteins correlate with the tropisms and pathogenicities of the corresponding viruses.  相似文献   

6.

Background

The rapid spread of the 2009 H1N1 pandemic influenza virus (pH1N1) highlighted problems associated with relying on strain-matched vaccines. A lengthy process of strain identification, manufacture, and testing is required for current strain-matched vaccines and delays vaccine availability. Vaccines inducing immunity to conserved viral proteins could be manufactured and tested in advance and provide cross-protection against novel influenza viruses until strain-matched vaccines became available. Here we test two prototype vaccines for cross-protection against the recent pandemic virus.

Methodology/Principal Findings

BALB/c and C57BL/6 mice were intranasally immunized with a single dose of cold-adapted (ca) influenza viruses from 1977 or recombinant adenoviruses (rAd) expressing 1934 nucleoprotein (NP) and consensus matrix 2 (M2) (NP+M2-rAd). Antibodies against the M2 ectodomain (M2e) were seen in NP+M2-rAd immunized BALB/c but not C57BL/6 mice, and cross-reacted with pH1N1 M2e. The ca-immunized mice did not develop antibodies against M2e. Despite sequence differences between vaccine and challenge virus NP and M2e epitopes, extensive cross-reactivity of lung T cells with pH1N1 peptides was detected following immunization. Both ca and NP+M2-rAd immunization protected BALB/c and C57BL/6 mice against challenge with a mouse-adapted pH1N1 virus.

Conclusion/Significance

Cross-protective vaccines such as NP+M2-rAd and ca virus are effective against pH1N1 challenge within 3 weeks of immunization. Protection was not dependent on recognition of the highly variable external viral proteins and could be achieved with a single vaccine dose. The rAd vaccine was superior to the ca vaccine by certain measures, justifying continued investigation of this experimental vaccine even though ca vaccine is already available. This study highlights the potential for cross-protective vaccines as a public health option early in an influenza pandemic.  相似文献   

7.
This study was conducted on 100 one-day-old broiler chicks to evaluate the effect of Poulvac E. coli vaccine in reduction of clinical signs and complications after concurrent infectious bronchitis virus (variant 02) and virulent E. coli O78 challenges. The birds were evaluated for clinical signs, mortality for 7?days post-infection, PM lesion score, average body weight and serological evaluation. Re-isolation and RT-PCR for the challenging infectious bronchitis virus (IBV) variant 02 were conducted thereafter. The results showed that the Poulvac E. coli at one-day old chicks in the presence of co-infection with virulent E. coli and IBV variant 02 provides better body weight gain at 35?days than the other groups. The challenge with IBV variant 02 alone in non-vaccinated birds doesn’t give any mortality; this indicated that the severity of IBV variant 02 increased by the presence of co-infection with Avian Pathogenic E. coli (APEc). The mortality percentage associated with both E. coli and IBV variant 02 infections in the none vaccinated group by Poulvac E. coli was 25% while this percentage was 10% of the vaccinated group. The Poulvac E. coli is not negatively affecting the immune response against different concurrent viral vaccines like Infectious bursal disease (IBD), and moreover, it improves the immune response against some others like Newcastle disease virus (NDV), Avian Influenza (AI) H5 and IBV.  相似文献   

8.

Objective

To assemble infectious bronchitis virus (IBV)-like particles bearing the recombinant spike protein and investigate the humoral immune responses in chickens.

Results

IBV virus-like particles (VLPs) were generated through the co-infection with three recombinant baculoviruses separately encoding M, E or the recombinant S genes. The recombinant S protein was sufficiently flexible to retain the ability to self-assemble into VLPs. The size and morphology of the VLPs were similar to authentic IBV particles. In addition, the immunogenicity of IBV VLPs had been investigated. The results demonstrated that the efficiency of the newly generated VLPs was comparable to that of the inactivated M41 viruses in eliciting IBV-specific antibodies and neutralizing antibodies in chickens via subcutaneous inoculation.

Conclusions

This work provides basic information for the mechanism of IBV VLP formation and develops a platform for further designing IBV VLP-based vaccines against IBV or other viruses.
  相似文献   

9.
An indirect enzyme-linked immunosorbent assay (ELISA) method based on a novel multi-epitope antigen of S protein (SE) was developed for antibodies detection against infectious bronchitis virus (IBV). The multi-epitope antigen SE protein was designed by arranging three S gene fragments (166–247 aa, S1 gene; 501–515 aa, S1 gene; 8–30 aa, S2 gene) in tandem. It was identified to be approximately 32 kDa as a His-tagged fusion protein and can bind IBV positive serum by western blot analysis. The conditions of the SE-ELISA method were optimized. The optimal concentration of the coating antigen SE was 3.689 μg/mL and the dilution of the primary antibodies was identified as 1:1000 using a checkerboard titration. The cut-off OD450 value was established at 0.332. The relative sensitivity and specificity between the SE-ELISA and IDEXX ELISA kit were 92.38 and 89.83%, respectively, with an accuracy of 91.46%. This assay is sensitive and specific for detection of antibodies against IBV.  相似文献   

10.
The development of a vaccine is still a priority in the fight against human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). Since conventional vaccine strategies have failed to provide a highly immunoprotective effect, approaches based on the rational design of vaccines composed of multiple HIV neutralizing epitopes have been proposed as potential vaccines. The aim of this study is to design a multiepitopic protein (Multi-HIV) carrying several neutralizing epitopes from both gp120 and gp41 as an effort to develop a new broad immunization scheme against HIV. This Multi-HIV was initially produced in a recombinant Escherichia coli strain either as a single protein or fused to glutathione-S-transferase. These proteins were purified by immobilized metal ion affinity chromatography and shown to be antigenic by positive reactivity in Western blot analyses using sera from HIV-positive patients for labeling. Since global immunization strategies are often limited by costs, platforms that require minimal processing are the priority in this field. Therefore, we explored the possibility of using transplastomic tobacco plants as an experimental model of a low cost plant-based vaccine against HIV. Transplastomic tobacco plants carrying the multi-HIV gene were developed and verified by PCR analyses. The expected Multi-HIV recombinant protein was localized in the chloroplast as proven first by confocal microscopy and subsequently by Western blot analysis. Tobacco-derived Multi-HIV protein was clearly able to evoke humoral responses in mice when orally administered without adjuvants. This report constitutes an effort to explore a new low-cost candidate that could have future implications on the development of affordable HIV vaccines.  相似文献   

11.
12.
Most children in Africa receive their vaccine against tuberculosis at birth. Those infants born to human immunodeficiency virus type 1 (HIV-1)-positive mothers are at high risk of acquiring HIV-1 infection through breastfeeding in the first weeks of their lives. Thus, the development of a vaccine which would protect newborns against both of these major global killers is a logical yet highly scientifically, ethically, and practically challenging aim. Here, a recombinant lysine auxotroph of Mycobacterium bovis bacillus Calmette-Guérin (BCG), a BCG strain that is safer than those currently used and expresses an African HIV-1 clade-derived immunogen, was generated and shown to be stable and to induce durable, high-quality HIV-1-specific CD4+- and CD8+-T-cell responses. Furthermore, when the recombinant BCG vaccine was used in a priming-boosting regimen with heterologous components, the HIV-1-specific responses provided protection against surrogate virus challenge, and the recombinant BCG vaccine alone protected against aerosol challenge with M. tuberculosis. Thus, inserting an HIV-1-derived immunogen into the scheduled BCG vaccine delivered at or soon after birth may prime HIV-1-specific responses, which can be boosted by natural exposure to HIV-1 in the breast milk and/or by a heterologous vaccine such as recombinant modified vaccinia virus Ankara delivering the same immunogen, and decrease mother-to-child transmission of HIV-1 during breastfeeding.  相似文献   

13.
选择我国应用的五株鸡传染性支气管炎活疫苗毒株(JAAS、IBN、Jlin、J9和H120)和当地流行毒株(CK/CH/LDL/97 Ⅰ)作为研究对象,对其S1基因进行序列比对分析,结果表明疫苗株与流行毒株的核昔酸序列及推导的氨基酸序列同源性分别不超过76.4%和78.7%.S1基因的核苷酸系统发育树显示,疫苗株与流行毒株分属不同进化群,亲缘关系较远,属于不同的基因型.用这五株活疫苗进行针对强毒株CK/CH/LDL/97Ⅰ株的免疫保护实验,可见临床发病率为30%~100%;攻毒5d后每组随机扑杀10只鸡,采集器官,应用RT-PCR法检测病毒,气管样品病毒检出率为50%~90%,肾脏样品病毒检出率为10%~30%.由此可见:我国目前使用的主要活疫苗对异种IBV分离株的感染不能提供完全的保护作用.  相似文献   

14.
15.
B型流感病毒(influenza B virus,IBV)比A型流感病毒(influenza A virus,IAV)更易引发并发症,在一定季节内造成的疾病负担甚至超过IAV,但目前人们对IBV的关注较少。为了分析IBV临床毒株B/Guangxi-Jiangzhou/1352/2018的遗传进化特点,本研究构建了系统进化树,并以世界卫生组织推荐的疫苗株为参考,对其血凝素(hemagglutinin,HA)和神经氨酸酶(neuraminidase,NA)进行了氨基酸序列同源性及突变位点分析。分析结果发现B/Guangxi-Jiangzhou/1352/2018毒株无谱系间重配现象,与同年疫苗株B/Colorado/06/2017匹配性较差。另外,测定了B/Guangxi-Jiangzhou/1352/2018毒株感染小鼠的半数致死量(median lethal dose,LD_(50))及其对小鼠的致病性。结果表明,B/Guangxi-Jiangzhou/1352/2018毒株感染小鼠的LD_(50)为10^(5.9) TCID_(50)(median tissue culture infective dose),小鼠肺脏中病毒滴度在感染后1 d达到高峰,炎性细胞因子的mRNA水平在感染后12 h达到高峰,且感染后肺脏中的肺泡损伤严重,有大量炎性细胞浸润。本研究证明了IBV临床毒株B/Guangxi-Jiangzhou/1352/2018可以感染小鼠并诱发典型的肺脏炎症,为研究IBV致病及传播机制奠定了基础,为评价新型流感疫苗、抗病毒和抗炎症药物提供了理想的动物模型。  相似文献   

16.

Background

Herpesvirus of turkey (HVT) as a vector to express the haemagglutinin (HA) of avian influenza virus (AIV) H5 was developed and its protection against lethal Marek’s disease virus (MDV) and highly pathogenic AIV (HPAIV) challenges was evaluated previously. It is well-known that avirulemt MDV type 1 vaccines are more effective than HVT in prevention of lethal MDV infection. To further increase protective efficacy against HPAIV and lethal MDV, a recombinant MDV type 1 strain 814 was developed to express HA gene of HPAIV H5N1.

Methodology/Principal Findings

A recombinant MDV-1 strain 814 expressing HA gene of HPAIV H5N1 virus A/goose/Guangdong/3/96 at the US2 site (rMDV-HA) was developed under the control of a human CMV immediate-early promoter. The HA expression in the rMDV-HA was tested by immunofluorescence and Western blot analyses, and in vitro and in vivo growth properties of rMDV-HA were also analyzed. Furthermore, we evaluated and compared the protective immunity of rMDV-HA and previously constructed rHVT-HA against HPAIV and lethal MDV. Vaccination of chickens with rMDV-HA induced 80% protection against HPAIV, which was better than the protection rate by rHVT-HA (66.7%). In the animal study with MDV challenge, chickens immunized with rMDV-HA were completely protected against virulent MDV strain J-1 whereas rHVT-HA only induced 80% protection with the same challenge dose.

Conclusions/Significance

The rMDV-HA vaccine was more effective than rHVT-HA vaccine for protection against lethal MDV and HPAIV challenges. Therefore, avirulent MDV type 1 vaccine is a better vector than HVT for development of a recombinant live virus vaccine against virulent MDV and HPAIV in poultry.  相似文献   

17.

Background

Currently existing yellow fever (YF) vaccines are based on the live attenuated yellow fever virus 17D strain (YFV-17D). Although, a good safety profile was historically attributed to the 17D vaccine, serious adverse events have been reported, making the development of a safer, more modern vaccine desirable.

Methodology/Principal Findings

A gene encoding the precursor of the membrane and envelope (prME) protein of the YFV-17D strain was inserted into the non-replicating modified vaccinia virus Ankara and into the D4R-defective vaccinia virus. Candidate vaccines based on the recombinant vaccinia viruses were assessed for immunogenicity and protection in a mouse model and compared to the commercial YFV-17D vaccine. The recombinant live vaccines induced γ-interferon-secreting CD4- and functionally active CD8-T cells, and conferred full protection against lethal challenge already after a single low immunization dose of 105 TCID50. Surprisingly, pre-existing immunity against wild-type vaccinia virus did not negatively influence protection. Unlike the classical 17D vaccine, the vaccinia virus-based vaccines did not cause mortality following intracerebral administration in mice, demonstrating better safety profiles.

Conclusions/Significance

The non-replicating recombinant YF candidate live vaccines induced a broad immune response after single dose administration, were effective even in the presence of a pre-existing immunity against vaccinia virus and demonstrated an excellent safety profile in mice.  相似文献   

18.
【目的】对从广西某鸭场发生呼吸道感染的11天龄樱桃谷肉鸭分离到的病毒株进行鉴定,并探索此鸭源病毒分离株的遗传变异情况。【方法】通过血凝试验、鸡胚接种实验、3?端非编码区(3'UTR)基因扩增与序列测定对分离株进行鉴定,并对该分离株的结构基因S1、E、M和N分别进行序列测定以及相似性、系统进化树分析和血清型鉴定。【结果】血凝试验为阴性,接种鸡胚盲传5代后出现侏儒胚,3?UTR基因测序结果表明为传染性支气管炎病毒(IBV)序列。该分离株S蛋白的裂解位点为RRSRR,S1、E、M和N基因与IBV毒株H120、4/91、LTD3核苷酸相似性分别为:78.6%–99.7%、85.4%–100.0%、91.6%–93.2%、86.7%–91.7%。除N基因存在点突变外,S1、E和M基因均存在氨基酸的突变、插入和(或)缺失。系统进化树分析显示,其S1基因属于4/91型,E、M和N基因均为LDT3型。血清型分析表明,该分离株的血清型不同于疫苗株H120和4/91。【结论】此鸭源病毒分离株为IBV,且该分离株的基因型与血清型均发生了变异。本研究结果暗示禽类传染性支气管炎的防控面临着更严峻的挑战。  相似文献   

19.

Background

There is a well-acknowledged need for an effective AIDS vaccine that protects against HIV-1 infection or limits in vivo viral replication. The objective of these studies is to develop a replication-competent, vaccine vector based on the adenovirus serotype 4 (Ad4) virus expressing HIV-1 envelope (Env) 1086 clade C glycoprotein. Ad4 recombinant vectors expressing Env gp160 (Ad4Env160), Env gp140 (Ad4Env140), and Env gp120 (Ad4Env120) were evaluated.

Methods

The recombinant Ad4 vectors were generated with a full deletion of the E3 region of Ad4 to accommodate the env gene sequences. The vaccine candidates were assessed in vitro following infection of A549 cells for Env-specific protein expression and for posttranslational transport to the cell surface as monitored by the binding of broadly neutralizing antibodies (bNAbs). The capacity of the Ad4Env vaccines to induce humoral immunity was evaluated in rabbits for Env gp140 and V1V2-specific binding antibodies, and HIV-1 pseudovirus neutralization. Mice immunized with the Ad4Env160 vaccine were assessed for IFNγ T cell responses specific for overlapping Env peptide sets.

Results

Robust Env protein expression was confirmed by western blot analysis and recognition of cell surface Env gp160 by multiple bNAbs. Ad4Env vaccines induced humoral immune responses in rabbits that recognized Env 1086 gp140 and V1V2 polypeptide sequences derived from 1086 clade C, A244 clade AE, and gp70 V1V2 CASE A2 clade B fusion protein. The immune sera efficiently neutralized tier 1 clade C pseudovirus MW965.26 and neutralized the homologous and heterologous tier 2 pseudoviruses to a lesser extent. Env-specific T cell responses were also induced in mice following Ad4Env160 vector immunization.

Conclusions

The Ad4Env vaccine vectors express high levels of Env glycoprotein and induce both Env-specific humoral and cellular immunity thus supporting further development of this new Ad4 HIV-1 Env vaccine platform in Phase 1 clinical trials.  相似文献   

20.
江国托  刘思国 《病毒学报》1999,15(3):249-251
反转录聚合酶链反应扩增鸡传染性支气管炎病毒中国流行株的主要免疫原纤突蛋白S1基因,将其插入载体pUC18的BamHⅠ/HindⅢ位点,在大肠杆菌中实现目的的基因的分子克隆。经克隆化S1基因的限制性酶切片多段多态性分析和Southern杂交之后,双脱氧链终止法测定其5‘端高变区核苷酸序列,并以此与GeneBank中的参考毒株Massachussetts41相应序列作比较,分析其同源性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号