首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 484 毫秒
1.
Li K  Feng J  Xu ZR 《生理科学进展》2005,36(3):279-281
Ghrelin是一种新发现的含有28个氨基酸的生长激素释放肽,为生长激素促分泌素受体(growthhormonesecretagoguereceptor,GHSR)的内源性配体。当Ghrelin与其特异性受体(GHSR)结合后会产生一系列生物学效应。Ghrelin具有刺激垂体前叶释放生长激素、增加食欲、调节能量代谢平衡,以及促进胃酸分泌等生物学功能,其作用机制目前尚不清楚。  相似文献   

2.
生长激素促释放剂受体配体的研究进展   总被引:2,自引:0,他引:2  
生长激素促释放剂是一种合成的小分子化合物,它通过生长激素促释放剂受体而起作用,该受体是一种新的G蛋白偶联受体。以前曾认为生长激素促释放剂受体是一种孤儿受体,直到近年来从人和鼠的胃中鉴定到Ghrelin的存在,而改变了这种看法。Ghrelin是包含28个氨基酸残基的肽,在3号位的丝氨酸位点有辛酰化基团。该肽是在X/A样细胞分泌颗粒中发现的,Ghrelin的发现表明促垂体分泌生长激素可能不止受到来自下丘脑的生长激素释放激素的调节,同时还可能受到来自胃和下丘脑的Ghrelin的调节。  相似文献   

3.
肥胖抑制素(obestatin)和生长激素释放肽(ghrelin)能互相拮抗,参与血糖的调节.其中obestatin与GPR-39(G-protein-coupled receptor 39)结合抑制摄食和胃肠排空、促进胰岛β细胞功能,影响胰岛素的分泌;而ghrelin与生长激素促分泌受体(GHSR1a)结合,促进食欲和胃肠排空,减少脂肪的利用,抑制胰岛细胞凋亡,调节胰岛素的分泌.但两者参与血糖调节的具体机制尚存在争议.  相似文献   

4.
鲑鱼生长激素基因分泌型表达质粒的构建   总被引:1,自引:0,他引:1  
生长激素(GH)是动物垂体前叶分泌的一种多肽类激素.应用分子重组及PCR等技术,构建了一种鲑鱼生长激素基因分泌型表达质粒pOsGH153,使编码鲑鱼生长激素成熟肽的序列克隆在大肠杆菌分泌型表达载体PIN-Ⅲ-ompA内,直接位于编码大肠杆菌外膜蛋白A信号肽序列的下游,在Lpp-Lac杂合启动子控制下,经IPTG诱导,分子量约23 000的鲑鱼生长激素在大肠杆菌中获得高效表达,该产物具有天然鲑鱼生长激素的免疫活性,直接分泌到细胞周质,而信号肽被自动剪除.  相似文献   

5.
在硬骨鱼类,生长激素的合成是由从下丘脑分泌的神经内分泌因子和由垂体及其他外周器官分泌的调节因子来调控的.从细胞水平上阐明这些调控因子在脑垂体的生长激素分泌细胞中的信号分化和整合机制,对于更好地了解鱼类生长激素的合成与分泌的内分泌调控网络有重要意义.本文综述了GH调节因子作用机制研究的新进展,包括神经内分泌因子,垂体及外周水平的调控因子,主要侧重于它们的受体系统及受体后的信号转导通路.  相似文献   

6.
以1龄性腺发育中期鲤鱼为材料,采用腹腔注射的方法,研究了不同的下丘脑肽和神经递质对鲤鱼促性腺激素和生长激素分泌的影响。结果表明:促甲状腺激素释放激素,L-多巴,甲基睾酮,γ-氨基丁酸,促黄体素主激素类似物和三磺甲状腺原氨酸者都能显著刺激GtH的分泌,但最大效应时间各不相同。  相似文献   

7.
张婷  孙曼霁 《生命科学》2007,19(2):208-213
生长激素/胰岛素样生长因子-1(GH/IGF-1)轴的合成、分泌、调节及生物学活性与阿尔茨海默病(AD)有密切关系。生长激素(GH)的合成和分泌受生长激素释放激素(GHRH)正向调节。GH/IGF-1轴活性下降导致一系列生理功能变化。GH/IGF-1缺乏可引起衰老及神经退行性变(AD)而导致认知功能的下降,相应激素的补给可以抑制或逆转这种认知障碍。越来越多的证据表明:GH/IGF-1参与AD型痴呆病理过程,对AD有很好的治疗应用前景。本文就生长激素/胰岛素样生长因子1在AD发病中的机理和药理学研究做一综述。  相似文献   

8.
目的:为了寻找高活性和长半衰期生的GHRH类似肽。方法:通过使用独特的酸敏感水解位点Asp-Pro的原核表达系统,构建了新的Pro-hGHRH(1-44)-Gly-Gly-Cys类似肽。通过重组细菌裂解、包含体洗涤、乙醇分级沉淀、酸水解、SP-Sephadex C-25和Sephadex G-10柱层析等技术,纯化了高纯度的Pro-hGHRH(1-44)-Gly-Gly-Cys肽。通过使用SDS-PAGE、离子化质谱、雌大鼠垂体和人流产胎儿垂体,测定了多肽的纯度、分子量、生长激素释放活性。结果:Pro-hGHRH(1-44)-Gly-Gly-Cys肽分子量5373Da与实际值吻合,0.1~10 μg/ml的肽剂量不论是对人垂体还是大鼠垂体都增加了垂体生长激素的释放,大鼠垂体生长激素的释放具有剂量依赖性。与标准的hGHRH(1-40)肽比较,新的类似肽有较高的GH释放活性。结果也显示了,Pro-GHRH(1-44)-Gly-Gly-Cys与Pro-hGHRH(1-44)肽的GH释放活性无统计学差异。结论:新的类似肽有较好的生长激素释放活性、功能选择性和种属特异性。  相似文献   

9.
鱼类生长和生长激素分泌活动的调节(综述)   总被引:19,自引:4,他引:15  
林浩然 《动物学报》1996,42(1):69-79
本文综述近十年来在鱼类生长激素分泌和鱼体生长的神经内分泌调节方面取得的研究进展,阐明脑(各种神经内分泌因子)-脑垂体(分泌生长激素)-肝脏(产生类胰岛素生长因子)轴调控鱼类生长的作用,并在此理论基础上提出可供养鱼生产实践应用的基本途径。  相似文献   

10.
生长激素的分泌不仅受到GHRH、SRIF的调节 ,还受到GHS R及其配体GHS的作用。本文综述了GHS R的发现背景、结构特点以及生理功能 ,讨论了GHS R促GH分泌的分子机制及其对多种组织器官可能影响 ,同时还探讨了除Ia和Ib亚型外还存在其它GHS R亚型的可能性。  相似文献   

11.
Primary cell cultures were prepared from fetal, neonatal and adult rat pituitaries and evaluated for their ability to secrete growth hormone (GH) in response to growth hormone-releasing factor (GRF). Pituitary cells prepared from fetuses at days 19 and 21 of gestation, neonatal animals at the day of birth (day 0) or the following day (day 1) and peripubertal male rats showed full dose response curves to GRF with maximal GH release when stimulated with 1 X 10(-10) M rat GRF. At this concentration of GRF, the amount of GH released was not different from that elicited by activation of adenylate cyclase with 1 X 10(-5) M forskolin. In contradistinction, a preparation of cells from fetuses at day 18 of gestation did not show the same release of GH when challenged with 1 X 10(-10) M GRF and forskolin (0.057 +/- 0.001, compared to 0.076 +/- 0.003 micrograms/10(5) cells per 4.5 h), although the cells clearly responded to both secretagogues (basal levels of GH, 0.029 +/- 0.002 micrograms/10(5) cells per 4.5 h). While cells prepared from fetuses at day 21 of gestation or from animals after birth released 5-10% of their total cellular GH content, those prepared from 18- and 19-day fetuses released as much as 40% of their total GH suggesting there is a maturation of intracellular GH processing that occurs late in gestation. The results show that, in late pregnancy, the rat fetal pituitary is highly responsive to growth hormone-releasing factor and suggest that this peptide participates in regulating GH levels during the perinatal period.  相似文献   

12.
In teleost fishes, growth hormone (GH) appears to play an important regulatory role in several, apparently disparate, physiological events, including reproduction, osmotic or ionic regulation, metabolism, growth and development. GH secretion is regulated by hypothalamic neuroendocrine factors that either act directly on the somatotrophic cells in the pituitary gland, or modulate the secretion or activity of other neuroendocrine factors. In addition, the degree of the neuroendocrine influence on GH release is influenced by the nutritional and reproductive state of the fish; moreover, there appear to be marked species differences in some aspects of this neuroendocrine-physiological condition relationship among fish species. Thus, the neuroendocrine control of GH secretion in fishes is complex, and still poorly understood. The neuropeptides, gonadotrophin-releasing hormone, growth hormone-releasing hormone, thyrotrophin-releasing hormone, neuropeptide Y, serotonin and pituitary adenylate cyclase-activating polypeptide have all been demonstrated to stimulate GH in fish, as has the glutamate agonist, N-methyl-d,l-aspartate. Conversely, somatostatin has a potent inhibitory action on GH release in goldfish and carp, but is less effective in salmon and trout species.This review examines the interactive nature of the neuroendocrine control of GH secretion in fishes, and the manner in which gonadal steroids, directly or indirectly, modulate GH secretion and/or the release, or the activity, of the neuroendocrine factors.  相似文献   

13.
Inhibitory effects of cysteamine on neuroendocrine function   总被引:1,自引:0,他引:1  
The action of cysteamine on anterior pituitary hormone secretion was studied in vivo using conscious, freely moving male rats and in vitro using anterior pituitary cells in monolayer culture. Administration of 500 micrograms cysteamine into the lateral cerebral ventricles of normal rats caused the complete inhibition of pulsatile GH secretion for a minimum of 6 h. This treatment also significantly decreased plasma concentrations of LH for at least 6 h in orchiectomized rat, TSH in short-term (0.5 month) thyroidectomized rats, and PRL in long-term (6 months) thyroidectomized rats. The in vivo stimulation of GH, LH, TSH and PRL with their respective releasing hormones 60 min after administration of cysteamine was not different from the response observed in rats pretreated with saline except for PRL where cysteamine pretreatment significantly inhibited the expected PRL increase. In vitro, 1 mM cysteamine decreased basal and TRH stimulated PRL release while not affecting basal or stimulated GH, LH, TSH and ACTH secretion. These data demonstrate the dramatic and wide-ranging effects of cysteamine on anterior pituitary hormone secretion. This action appears to be mediated through hypothalamic pathways for GH, LH and TSH and through a pituitary pathway for PRL.  相似文献   

14.
A series of structurally diverse growth hormone (GH) releasing substances have been synthesized that are distinct from the naturally occurring GH releasing hormone (GHRH). These synthetic molecules range from the family of GH releasing peptides and mimetics such as MK-0677. The physiological importance of these molecules and their receptor is exemplified by studies in the elderly. For example, when MK-0677 was administered chronically to 70- to 90-year-old subjects, once daily, the age-related reduced amplitude of GH pulses was reversed to that of the physiological profile typical of young adults. In 1996, the synthesis of (35)S-MK-0677 was reported and used as a ligand to characterize a common receptor (GH secretagogue receptor [GHS-R]) for the GH releasing substances. The GHS-R is distinct from the GHRH receptor. Subsequently, the GHS-R gene was cloned and shown to encode a unique G-protein coupled receptor with a deduced protein sequence that was 96% identical in human and rat. Because of the physiological importance of the GHS-R, a search for family members (FMs) was initiated and its molecular evolution investigated. Three FMs GPR38, GPR39 and FM3 were isolated from human genomic libraries. To accelerate the identification of other FMs, a vertebrate organism with a compact genome distant in evolutionary terms from humans was exploited. The pufferfish (Spheroides nephelus) genome provides an ideal model for the discovery of human genes. Three distinct full-length clones encoding proteins of significant sequence identity to the human GHS-R were cloned from the pufferfish. Remarkably, the pufferfish gene with highest sequence homology to the human receptor was activated by the hexapeptide and non-peptide ligands. These intriguing results show that the structure and function of the ligand binding pocket of the human GHS-R has been highly conserved in evolution ( approximately 400 million years) and strongly suggests that an endogenous natural ligand has been conserved. This new information is consistent with a natural ligand for the GHS-R playing a fundamentally important and conserved role in physiology.  相似文献   

15.
以1龄性腺发育中期鲤鱼为材料,采用腹腔(i.p)注射的方法,研究不同的下丘脑肽和神经递质对鲤鱼促性腺激素(GtH)和生长激素(GH)分泌的影响。结果表明:促甲状腺激素释放激素(TRH)、L-多巴(L-DOPA)、甲基睾酮(MT)、γ-氨基丁酸(GABA)、促黄体素释放激素类似物(LHRH-A)和三碘甲状腺原氨酸(T3)都能显著刺激GtH的分泌,但最大效应时间各不相同。TRH和LHRH-A能促进GH的分泌,L-DOPA、MT、GABA对血清GH水平没有明显影响;T3则对GH分泌有一定的抑制作用。这说明鲤鱼GtH和GH的分泌除了受各自的下丘脑释放因子和释放抑制因子的双重神经内分泌调控外,还受多种其它相同和不同调节因子的影响,也反映了鲤鱼GtH和GH分泌的神经内分泌调控的复杂性。  相似文献   

16.
The synthetic replicate of a 44 amino acid peptide isolated from a human pancreatic tumor which had caused acromegaly possesses high specific activity to release growth hormone (GH) in anesthetized male rats. The GH secretion induced by this peptide is dose-dependent from 50 ng to 1 μg, with plasma GH concentrations increasing more than 10-fold within 5 min of iv administration at the higher doses. Two enzymatic degradation products of the 44 residue peptide were also isolated and consist of the first 37 and 40 amino acids. All three peptides appear to possess similar potency, on a molar basis, invivo, contrary to invitro results. The specificity of these peptides on GH release was shown by their failure to alter plasma concentrations of prolactin (PRL), thyroid-stimulating hormone (TSH), luteinizing hormone (LH), follicle-stimulating hormone (FSH) and corticosterone. Based on these invivo results, the three peptides with serve as powerful tools with which to investigate the mechanisms of GH secretion.  相似文献   

17.
GH3 cells can be used effectively to study the in vitro mechanism of action of GRF. In these cells, there is a time and concentration-dependent release of cAMP into the medium. Rat hypothalamic GRF, (rGRF) is 7 to 10 fold more active than human hypothalamic GRF (hGRF). VIP, a peptide which is structurally homologous to GRF, stimulates cAMP efflux in GH3 cells, with a higher affinity than hGRF or rGRF. We propose that in contradistinction to the normal rat pituitary, the stimulation of cAMP release by GRF in GH3 cells occurs via activation of VIP-preferring receptors and that GRF (rGRF in particular) behaves as a partial VIP agonist.  相似文献   

18.
Inhibitory potencies were compared of several mono- and dicarboxy-based pTyr mimetics in Grb2 SH2 domain versus PTP1B assays. Although in both systems pTyr residues provide critical binding elements, significant differences in the manner of recognition exist between the two. This is reflected in the current study, where marked variation in relative potencies was observed between the two systems. Of particular note was the poor potency of all monocarboxy-based pTyr mimetics against PTP1B when incorporated into a hexapeptide platform. The recently reported high PTP1B inhibitory potency of similar phenylphosphate mimicking moieties displayed in small molecule, non-peptide structures, raises questions on the limitations of using peptides as platforms for pTyr mimetics in the discovery of small molecule inhibitors.  相似文献   

19.
Growth hormone (GH) secretagogues (GHS) are synthetic peptidyl and non-peptidyl molecules which possess strong, dose-dependent and reproducible GH releasing effects as well as significant prolactin (PRL) and adrenocorticotropic hormone (ACTH) releasing effects. The neuroendocrine activities of GHS are mediated by specific receptors mainly present at the pituitary and hypothalamic level but also elsewhere in the central nervous system. GHS release GH via actions at the pituitary and (mainly) the hypothalamic level, probably acting on GH releasing hormone (GHRH) secreting neurons and/or as functional somatostatin antagonists. GHS release more GH than GHRH and the coadministration of these peptides has a synergistic effect but these effects need the integrity of the hypothalamo-pituitary unit. The GH releasing effect of GHS is generally gender-independent and undergoes marked age-related variations reflecting age-related changes in the neural control of anterior pituitary function. The PRL releasing activity of GHS probably comes from direct pituitary action, which indeed is slight and independent of both age and gender. The acute stimulatory effect of GHS on ACTH/cortisol secretion is similar to that of corticotropin releasing hormone (CRH) and arginine vasopressin (AVP). In physiological conditions, the ACTH releasing activity of GHS is mediated by central mechanisms, at least partially, independent of both CRH and AVP but probably involving GABAergic mechanisms. The ACTH releasing activity of GHS is gender-independent and undergoes peculiar age-related variations showing a trend towards increase in ageing. GHS possess specific receptors also at the peripheral levels in endocrine and non-endocrine human tissues. Cardiac receptors are specific for peptidyl GHS and probably mediate GH-independent cardiotropic activities both in animals and in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号