首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ghrelin是最初在胃内分泌细胞中发现的脑肠肽,是生长激素促分泌受体(GHS-R)的内源性配体。近年来的研究证明,除胃肠道外,两栖类动物的下丘脑、心脏、胰腺、肺、胎盘都能产生ghrelin。Ghrelin由28个氨基酸组成,其N端第3位n-辛酰化的丝氨酸是ghrelin与其受体结合并发挥生物学活性的关键部位。Ghrelin主要的生理功能是促进生长激素释放,促进摄食和调节能量代谢。Ghrelin可以作用于胃肠道,  相似文献   

2.
肥胖抑制素(obestatin)是新近发现的一种与食欲刺激素有关的多肽(ghrelin-associated peptide,GAP),可以结合孤儿G蛋白GPR39受体,抑制摄食、胃肠功能和体重的增加,被认为是食欲刺激激素(ghrelin)的生物学拮抗剂或阴阳活性多肽.但最新研究认为,obestatin不能与GPR39受体特异性结合,也不能改变ghrelin所诱导的生物学效应.鉴于上述不同的研究报道,就其相关研究成果作一概述.  相似文献   

3.
新近发现的一种调节肽——生长素   总被引:4,自引:0,他引:4  
生长素(ghrelin)是一种新发现的含有28个氨基酸的多肽,1999年日本科学家Kojima最先在小鼠和人胃内分泌细胞中发现。最近又在人的下丘脑和脑干发现一种孤立的G蛋白偶联受体-促生长激素分泌受体(GHS-Rs),是其特异性受体,当生长素与其特异性受体结合后会产生一系列生物学效应,如刺激垂体前叶释放生长激素,增加食欲,调节能量平衡,促进胃酸分泌,抗生长素免疫球蛋白G可明显抑制食欲,神经肽Y(NPY)及刺鼠肽基因相关蛋白(AGRP)的抗体或拮抗剂可阻断生长素的增食欲作用,生长素可使NPY基因表达增高并阻断瘦素引起的降低食欲作用,禁食,低血糖和瘦素能使生长素在胃内表达上调,它可能是生长激素/胰岛素样生长因子-1轴和调节能量平衡的神经内分泌调节之间的一个新的联结纽带,与肥胖等密切相关。  相似文献   

4.
鲁碧楠  庞宗然 《生物学杂志》2012,29(4):78-80,85
高血糖是糖尿病典型的病理特征,血糖的波动是决定糖尿病患者是否出现并发症的重要因素,而由胰岛β细胞合成分泌的胰岛素,是体内唯一可以降低血糖的多肽类激素.胰岛β细胞"质"与"量"决定着体内胰岛素分泌情况和血糖的调控.围绕"促进β细胞损伤修复,提升胰岛β细胞质量是治疗糖尿病的核心"之理念,提出构成胰岛β细胞"质"的三要素:细胞结构、"真""假"胰岛素和胰岛素调节型分泌.旨在为β细胞质量评价和糖尿病机制研究提供一定的理论参考.  相似文献   

5.
最近从大鼠胃组织中发现一种新的摄食相关肽,命名为obestatin。Obestatin是一种ghrelin相关肽,与ghrelin来自同一基因。Obestatin由23个氨基酸组成,分子量2516.3,氨基酸序列为FNAPFDVGIKLSGAQYQQHGRALNH2,C末端甘氨酸残基带有酰胺化修饰基团。Obestatin是G蛋白偶联孤儿受体(GPR39)的内源性配体。功能研究表明,obestatin与ghrelin截然相反,给小鼠腹腔或脑室注射obestatin,均呈时间和剂量依赖性抑制摄食:抑制大鼠的体重增加;持续件抑制冒排卒;减少宰肠肌条的收缩活动,  相似文献   

6.
胰岛素与糖尿病胰腺包括两类组织:一是分泌消化液,由管道通入十二指肠腔,属外分泌腺.二是胰腺中有许多内分泌细胞,聚集成细胞群,形成小岛,叫做胰岛,总数1—2百万个,总重量约1克,占胰重的1—2%.胰岛集中在胰头部分,包括四种不同的细胞:α细胞占20%,分泌胰高血糖素(glucagon);β细胞较α细胞小,占75%,分泌胰岛素(insulin);δ细胞占5%,可能分泌胃泌素(gastrin),生理作用尚不明;γ细胞,人、猴、兔的胰岛有之.α、β两种细胞相互靠近,只隔一狭小的空隙,α细胞所分泌的胰高血糖素可迅速作用于β细胞而促使胰岛素的分泌. 胰岛素是一种可溶性蛋白质激素,分子量5,743,等电点5.35. 胰岛素的分泌主要受血糖浓度的调节.当血糖浓度升高时,直接使β细胞分泌的胰岛素增加.因为胰岛邻近有丰富的血管,每个胰岛细胞几乎都和毛细血管直接接触;胰岛及其邻近血管均富于神经支配,交感神经与副交感神经纤维进入胰岛后直接终止于胰岛细胞.此外,中枢神经系统可通过迷走神经促进胰岛素的分泌.  相似文献   

7.
胰岛素分泌及调节的分子机制   总被引:1,自引:0,他引:1  
胰岛素是机体最重要的激素之一,它调节机体的血糖稳定、促进同化代谢、调节细胞的分裂分化和生长发育.胰岛β细胞的胰岛素分泌受到营养物质、神经递质和激素的精确调控.它们的作用部位可分为改变胞内第二信使物质水平的近端调节步骤(钙依赖性),和直接作用于胞吐分子构件的末端调节步骤(钙非依赖性).胰岛素的胞吐过程与神经递质的释放机制类似.葡萄糖等营养物质主要通过升高胞内的ATP/ADP比率,导致ATP敏感钾通道关闭、细胞膜去极化、钙内流这一途径增加胰岛素的分泌.神经递质和部分激素通过其G蛋白偶联受体-G蛋白系统的跨膜信号转换后,影响胞内IP3、DAG、Ca2+等第二信使物质水平,主要通过PKA、PKC等蛋白激酶途径,调节胰岛素的分泌.胞内单体G蛋白参与了对囊泡运输和胞吐过程的调控,G蛋白也可能直接作用于胞吐过程,在分泌过程中发挥了重要的调节作用.  相似文献   

8.
胃激素调节肽(ghrelin,也称:胃生长激素释放激素、生长激素释放肽)是新发现的一种肽类激素,除具有促生长激素分泌外,还参与促进食欲、增加食量、减少能量消耗和促使脂肪积聚,从而导致体重增加,身体肥胖。另外,还与胰岛素、抵抗素、脂联素、瘦蛋白(leptin)及能量代谢密切相关,并可诱发胰岛素抵抗(IR)等。假以时日,随着胃激素调节肽研究的深入,有可能为Ⅱ型糖尿病发病机制的探讨、预防和诊治领域的研究开辟新途径。  相似文献   

9.
张婷  孙曼霁 《生命科学》2007,19(2):208-213
生长激素/胰岛素样生长因子-1(GH/IGF-1)轴的合成、分泌、调节及生物学活性与阿尔茨海默病(AD)有密切关系。生长激素(GH)的合成和分泌受生长激素释放激素(GHRH)正向调节。GH/IGF-1轴活性下降导致一系列生理功能变化。GH/IGF-1缺乏可引起衰老及神经退行性变(AD)而导致认知功能的下降,相应激素的补给可以抑制或逆转这种认知障碍。越来越多的证据表明:GH/IGF-1参与AD型痴呆病理过程,对AD有很好的治疗应用前景。本文就生长激素/胰岛素样生长因子1在AD发病中的机理和药理学研究做一综述。  相似文献   

10.
MEG3是一种长链非编码RNA。已有研究证明,鼠源Meg3参与小鼠诱导多能干细胞、神经元和视网膜的分化过程。最新报道,MEG3在人胰岛β细胞中高表达,但其对维持成年胰岛β细胞的功能尚不清楚。本研究旨在探讨Meg3在小鼠胰岛细胞胰岛素分泌功能中的作用。实时定量PCR揭示,与Balb/c小鼠心、肝、脾、肺、肌、肾等组织/器官比较,Meg3在胰腺组织中高表达。在非糖尿病小鼠发生自发性糖尿病的第8、12周,Meg3在胰岛中的表达水平分别下调24%±8%和29%±9% (P<0.01);而当血糖升高20 mmol/L,小鼠胰岛中Meg3表达下调72%±16%(P<0.01)。在MIN6细胞中采用RNA干扰敲减Meg3的表达,在高糖浓度(20 mmol/L)刺激条件下,胰岛素分泌显著减少。小鼠静脉注射siRNA,结合血糖测定或葡萄糖耐受试验(IPGTT)显示,si-Meg3小鼠血清胰岛素水平显著下降。注射葡萄糖前血糖升高,注射葡萄糖后耐受能力降低;免疫组化分析显示,si-Meg3小鼠胰岛素阳性细胞的面积减少。实验结果提示,Meg3通过参与胰岛素的合成和分泌维持成年小鼠胰岛功能。Meg3表达失调可能参与I型糖尿病(T1DM)发病过程。  相似文献   

11.
An appropriate regulation of the insulin production and secretion in pancreatic β-cells is necessary for the control of blood glucose homeostasis. The pancreatic duodenal homeobox factor-1 (Pdx-1) is among the various factors and signals which are implicated in the regulation of the insulin synthesis and secretion in the pancreatic β-cells. Recently, we identified Pdx-1 as a substrate for protein kinase CK2. Since CK2 is implicated in the regulation of many different cellular signaling pathways we now asked whether it might also be involved in the regulation of the insulin regulation in β-cells. Here, we show that insulin treatment of β-cells resulted in an elevated CK2 kinase activity. On the other hand down-regulation of CK2 activity by quinalizarin led to an elevated level of insulin. These results demonstrate that CK2 is implicated in the insulin regulation on pancreatic β-cells.  相似文献   

12.
Insulin granule trafficking is a key step in the secretion of glucose-stimulated insulin from pancreatic β-cells. The main feature of type 2 diabetes (T2D) is the failure of pancreatic β-cells to secrete sufficient amounts of insulin to maintain normal blood glucose levels. In this work, we developed and applied tomography based on scanning transmission electron microscopy (STEM) to image intact insulin granules in the β-cells of mouse pancreatic islets. Using three-dimensional (3D) reconstruction, we found decreases in both the number and the grey level of insulin granules in db/db mouse pancreatic β-cells. Moreover, insulin granules were closer to the plasma membrane in diabetic β-cells than in control cells. Thus, 3D ultra-structural tomography may provide new insights into the pathology of insulin secretion in T2D.  相似文献   

13.
Whereas ghrelin is produced primarily in the stomach, a small amount of it is produced in pancreatic islets. Although exogenous administration of ghrelin suppresses insulin secretion in vitro or in vivo, the role of intraislet ghrelin in the regulation of insulin secretion in vivo remains unclear. To understand the physiological role of intraislet ghrelin in insulin secretion and glucose metabolism, we developed a transgenic (Tg) mouse model, rat insulin II promoter ghrelin-internal ribosomal entry site-ghrelin O-acyl transferase (RIP-GG) Tg mice, in which mouse ghrelin cDNA and ghrelin O-acyltransferase are overexpressed under the control of the rat insulin II promoter. Although pancreatic desacyl ghrelin levels were elevated in RIP-GG Tg mice, pancreatic ghrelin levels were not altered in animals on a standard diet. However, when Tg mice were fed a medium-chain triglyceride-rich diet (MCTD), pancreatic ghrelin levels were elevated to ~16 times that seen in control animals. It seems likely that the gastric ghrelin cells possess specific machinery to provide the octanoyl acid necessary for ghrelin acylation but that this machinery is absent from pancreatic β-cells. Despite the overexpression of ghrelin, plasma ghrelin levels in the portal veins of RIP-GG Tg mice were unchanged from control levels. Glucose tolerance, insulin secretion, and islet architecture in RIP-GG Tg mice were not significantly different even when the mice were fed a MCTD. These results indicate that intraislet ghrelin does not play a major role in the regulation of insulin secretion in vivo.  相似文献   

14.
Yuan H  Lu Y  Huang X  He Q  Man Y  Zhou Y  Wang S  Li J 《The FEBS journal》2010,277(24):5061-5071
Defects in insulin secretion by pancreatic cells and/or decreased sensitivity of target tissues to insulin action are the key features of type 2 diabetes. It has been shown that excessive generation of reactive oxygen species (ROS) is linked to glucose-induced β-cell dysfunction. However, cellular mechanisms involved in ROS generation in β-cells and the link between ROS and glucose-induced β-cell dysfunction are poorly understood. Here, we demonstrate a key role of NADPH oxidase 2 (NOX2)-derived ROS in the deterioration of β-cell function induced by a high concentration of glucose. Sprague-Dawley rats were fed a high-fat diet for 24 weeks to induce diabetes. Diabetic rats showed increased glucose levels and elevated ROS generation in blood, but decreased insulin content in pancreatic β-cells. In vitro, increased ROS levels in pancreatic NIT-1 cells exposed to high concentrations of glucose (33.3 mmol·L(-1)) were associated with elevated expression of NOX2. Importantly, decreased glucose-induced insulin expression and secretion in NIT-1 cells could be rescued via siRNA-mediated NOX2 reduction. Furthermore, high glucose concentrations led to apoptosis of β-cells by activation of p38MAPK and p53, and dysfunction of β-cells through phosphatase and tensih homolog (PTEN)-dependent Jun N-terminal kinase (JNK) activation and protein kinase B (AKT/PKB) inhibition, which induced the translocation of forkhead box O1 and pancreatic duodenal homeobox-1, followed by reduced insulin expression and secretion. In conclusion, NOX2-derived ROS could play a critical role in high glucose-induced β-cell dysfunction through PTEN-dependent JNK activation and AKT inhibition.  相似文献   

15.
Obestatin is a 23-amino acid peptide derived from preproghrelin, purified from stomach extracts and detected in peripheral plasma. In contrast to ghrelin, obestatin has been reported to inhibit appetite and gastric motility. However, these effects have not been confirmed by some groups. Obestatin was originally proposed to be the ligand for GPR39, a receptor related to the ghrelin receptor subfamily, but this remains controversial. Obestatin and GPR39 are expressed in several tissues, including pancreas. We have investigated the effect of obestatin on islet cell secretion in the perfused rat pancreas. Obestatin, at 10 nM, inhibited glucose-induced insulin secretion, while at 1 nM, it potentiated the insulin response to glucose, arginine and tolbutamide. The potentiated effect of obestatin on glucose-induced insulin output was not observed in the presence of diazoxide, an agent that activates ATP-dependent K(+) channels, thus suggesting that these channels might be sensitive to this peptide. Obestatin failed to significantly modify the glucagon and somatostatin responses to arginine, indicating that its stimulation of insulin output is not mediated by an alpha- or delta-cell paracrine effect. Our results allow us to speculate about a role of obestatin in the control of beta-cell secretion. Furthermore, as an insulinotropic agent, its potential antidiabetic effect may be worthy of investigation.  相似文献   

16.
Pancreatic β-cells originate from gut endoderm during development. Pancreatic endocrine cells represent about 10% of the mature pancreatic cells, and β-cells represent the majority of endocrine cells. β-cells secrete insulin in response to elevation of nutrient concentrations. Insulin maintains glucose homeostasis by stimulating glucose uptake into muscle and adipose tissue. Aquaglyceroporin 7, permeable to water, glycerol and urea, is expressed in pancreatic β-cells and was recently described as being involved in the control of insulin secretion.  相似文献   

17.
Glucagon-like peptide-1 (GLP-1) stimulates insulin secretion from pancreatic β-cells in a glucose-dependent manner. However, factors other than glucose that regulate the β-cell response to GLP-1 remain poorly understood. In this study, we examined the possible involvement of insulin and receptor tyrosine kinase signaling in regulation of the GLP-1 responsiveness of β-cells. Pretreatment of β-cells with HNMPA, an insulin receptor inhibitor, and AG1478, an epidermal growth factor receptor inhibitor, further increased the cAMP level and Erk phosphorylation in the presence of exendin-4 (exe-4), a GLP-1 agonist. When β-cells were exposed to a high concentration of glucose (25 mM), which stimulates insulin secretion, exe-4-induced cAMP formation declined gradually as exposure time was increased. This decreased cAMP formation was not observed in the presence of HNMPA. HNMPA was able to further increase the exe-4-induced insulin secretion when β-cells were exposed to high glucose for 18 h. Treatment of β-cells with insulin significantly decreased exe-4-induced cAMP formation in a dose-dependent manner. Lowering the phospho-Akt level by HNMPA or LY294002, a PI3K inhibitor, further augmented exe-4-induced cAMP formation and Erk phosphorylation. These results suggest that insulin contributes to fine-tuning of the β-cell response to GLP-1.  相似文献   

18.
ATP-sensitive potassium channels (KATP) regulate electrical activity and insulin secretion in pancreatic β-cells. When glucose concentration increases, the [ATP]/[ADP] ratio rises closing KATP channels, and the membrane potential depolarizes, triggering insulin secretion. This pivotal role of KATP channels is used not only by glucose but also by neurotransmitters, hormones and other physiological agents to modulate electrical and secretory β-cell response.In recent years, it has been demonstrated that estrogens and estrogen receptors are involved in glucose homeostasis, and that they can modulate the electrical activity and insulin secretion of pancreatic β-cells. The hormone 17β-estradiol (E2), at physiological levels, is implicated in maintaining normal insulin sensitivity for β-cell function. Long term exposure to E2 increases insulin content, insulin gene expression and insulin release via the estrogen receptor α (ERα), while rapid responses to E2 can regulate KATP channels increasing cGMP levels through the estrogen receptor β (ERβ) and type A guanylate cyclase receptor (GC-A). This review summarizes the main actions of 17β-estradiol on KATP channels and the subsequent insulin release in pancreatic β-cells.  相似文献   

19.
20.
TRPM2 is a Ca2+-permeable non-selective cation channel that can be activated by adenosine dinucleotides, hydrogen peroxide, or intracellular Ca2+. The protein is expressed in a wide variety of cells, including neurons in the brain, immune cells, endocrine cells, and endothelial cells. This channel is also well expressed in β-cells in the pancreas. Insulin secretion from pancreatic β-cells is the primary mechanism by which the concentration of blood glucose is reduced. Thus, impairment of insulin secretion leads to hyperglycemia and eventually causes diabetes. Glucose is the principal stimulator of insulin secretion. The primary pathway involved in glucose-stimulated insulin secretion is the ATP-sensitive K+ (KATP) channel to voltage-gated Ca2+ channel (VGCC)-mediated pathway. Increases in the intracellular Ca2+ concentration are necessary for insulin secretion, but VGCC is not sufficient to explain [Ca2+]i increases in pancreatic β-cells and the resultant secretion of insulin. In this review, we focus on TRPM2 as a candidate for a [Ca2+]i modulator in pancreatic β-cells and its involvement in insulin secretion and development of diabetes. Although further analyses are needed to clarify the mechanism underlying TRPM2-mediated insulin secretion, TRPM2 could be a key player in the regulation of insulin secretion and could represent a new target for diabetes therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号