首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The spatial distribution of the muddy fine sand community from the Bay of Veys (western English Channel) were investigated during spring and autumn 1997. A grid of 55 and 54 sites was sampled in March and October, respectively, using two replicates per site of a Hamon grab (0.25 m2) for macrofauna collection and an additional one for sediment analysis. A total of 172 species were sampled with a dominance of polychaetes, followed by crustaceans and bivalves. The species richness and abundance show low temporal changes despite higher values in October than in March. In March, the mean abundance was 165 ind. 0.5 m−2; in October, the mean abundance was 212 ind. 0.5 m−2. Four assemblages from the Abra alba-Pectinaria koreni community were identified corresponding to a bathymetric and sedimentary gradient from muddy fine sands with high levels of fine particles in shallow water to fine sands in deeper water. The discussion focuses on factors prevailing on the spatial structure of sandy communities in the English Channel.  相似文献   

2.
To assess potential risks of human visitation to ecological communities, the immediate effects of human trampling were investigated experimentally on small invertebrates inhabiting mid-upper intertidal hard bottoms covered by algae. Two different experimental intensities of trampling (60 and 120 footsteps) and controls (with no trampling) were applied to quadrats 20×20 cm in size (experimental area), within the two ‘no-entry, no-take’ zones of the Asinara Island MPA (Italy, Mediterranean Sea). One day after trampling ended, samples of benthic fauna were collected and the animals attributed to macrofaunal and meiofaunal components. Analyses of variance on the nine most common taxa of macrofauna identified significant higher abundance of bivalves, gammarid amphipods, polychaetes, isopods, oligochaetes in controls than in trampled plots. For nematodes, polychaetes, ostracods, oligochaetes, bivalves, acari, caprellid amphipods and tanaids a significant higher abundance of meiofaunal animals was found in controls than in trampled areas. Although no information on recovery is available, these results suggest that macrofaunal and meiofaunal taxa are vulnerable to this type of disturbance.  相似文献   

3.
Some benthic assemblages studies have tested the effects of different preservation procedures on biomass, but their influence on quantitative patterns (number of species and abundance) is still unclear. We evaluated the influence of two sample preservation procedures on quantitative patterns in benthic ecology. Ten sampling points were systematically interspersed on two types of sediment (sandy and muddy). At each sediment type, samples from five sampling points were fixed in 10% formalin, and the other five points were preserved in 70% ethanol (without previous fixation). Three replicates were collected at each sampling point, and samples were washed in 0.5 mesh size and sorted in laboratory. A cost/benefit analysis was performed considering the washing time in laboratory and the costs of substances. A total of 1970 individuals were collected (muddy sediment: 132; sandy sediment: 1838), belonging to 121 taxa (muddy: 49; sandy: 83). Assemblages preserved in ethanol were composed of 795 individuals and 80 taxa, while those fixed with formalin had 1173 individuals and 94 taxa. Polychaeta predominated as the most abundant group for both preservation procedures. For the whole benthic community, significant differences occurred only between sediment types. Significant differences in the number of individuals of polychaetes were observed for the different preservation procedures in sandy sediment. Ethanol has the best cost/benefit ratio in both sediment types due to additional costs to attend safety requirements for formalin-fixed samples. Further studies should evaluate how quantitative patterns are affected by exposure time of preservation, anesthesia interaction, and morphological deformations (e.g. impossibility of identification).  相似文献   

4.
Quantitative samples of benthic invertebrates were collected from a sandy riverbed of a mountainous stream (Kozu site of Takami-gawa stream, Nara Prefecture), central Japan by core samplers in five sampling occasions through the years 2008–2009. A total of 120 taxa were identified, representing 55 families and 97 genera. Insects formed about 92% of the total recorded taxa and 88% of individuals’ abundance. A total of 111 taxa of aquatic insects, belonging to 49 families and 92 genera, were identified and represented by ten orders. Oligochaeta and Acari were dominant non-insect invertebrates. Diptera was the most diverse insect group, followed by Trichoptera and Ephemeroptera. Dominant taxa were mesoinvertebrates, younger stages of macroinvertebrates, both of which predominantly inhabit the interstitial zone of a sandy riverbed. Both taxon richness and invertebrate abundance were higher in February 2009 and lower in April and August 2008. A few major invertebrate taxa demonstrated distinct seasonal trends; i.e. Nymphomyia alba, Rheosmittia, and Corynoneura were abundant in February 2009. Newly hatched larvae of Larcasia akagiae were abundant in May 2008. This study also demonstrated the effectiveness of core samplers to collect small-sized benthic fauna that inhabit the interstitial or hyporheic zone of the sandy riverbed.  相似文献   

5.
Summary The shallow marine subtropical Northern Bay of Safaga is composed of a complex pattern of sedimentary facies that are generally rich in molluscs. Thirteen divertaken bulk-samples from various sites (reef slopes, sand between coral patches, muddy sand, mud, sandy seagrass, muddy seagrass, mangrove channel) at water depths ranging from shallow subtidal to 40m were investigated with regard to their mollusc fauna >1mm, which was separated into fragments and whole individuals. Fragments make up more than 88% of the total mollusc remains of the samples, and their proportions correspond to characteristics of the sedimentary facies. The whole individuals were differentiated into 622 taxa. The most common taxon,Rissoina cerithiiformis, represented more than 5% of the total mollusc content in the samples. The main part of the fauna consists of micromolluscs, including both small adults and juveniles. Based on the results of cluster-, correspondence-, and factor analyses the fauna was grouped into several associations, each characterizing a sedimentary facies: (1) “Rhinoclavis sordidula—Corbula erythraeensis-Pseudominolia nedyma association” characterizes mud. (2) “Microcirce sp.—Leptomyaria sp. association” characterizes muddy sand. (3)”Smaragdia spp.-Perrinia stellata—Anachis exilis—assemblage” characterizes sandy seagrass. (4) “Crenella striatissima—Rastafaria calypso—Cardiates-assemblage” characterizes muddy seagrass. (5) “Glycymeris spp.-Parvicardium sueziensis-Diala spp.-assemblage” characterizes sand between coral patches. (6) “Rissoina spp.-Triphoridae —Ostreoidea-assemblage” characterizes reef slopes. (7) “Potamides conicus—Siphonaria sp. 2—assemblage” characterizes the mangrove. The seagrass fauna is related to those of sand between coral patches and reef slopes with respect to gastropod assemblages, numbers of taxa and diversity indices, and to the muddy sand fauna on the basis of bivalve assemblages and feeding strategies of bivalves. The mangrove assemblage is related to those of sand between coral patches and the reef slope with respect to taxonomic composition and feeding strategies of bivalves, but has a strong relationship to those of the fine-grained sediments when considering diversity indices. Reef slope assemblages are closely related to that of sand between coral patches in all respects, except life habits of bivalves, which distincly separates the reef slope facies from all others.  相似文献   

6.
Epibenthic patches dominated by barnacles Balanus crenatus Bruguiere and solitary ascidians Styela spp., Bolthenia echinata (L.) and Molgula spp. in the White Sea shallow subtidal develop on bivalve shells and small stones surrounded with muddy sand. The space between barnacles and ascidians is filled with muddy sediment inhabited by motile taxa. We hypothesized that (i) epibenthic patches and unstructured sediment would attract different motile fauna and (ii) motile fauna of the patches would be affected by local abundances of epibenthic foundation species. Most dominant motile species demonstrated a significant difference in abundance between the two microhabitats. In contrast to the fauna of the sediment, species composition observed in aggregations of barnacles and ascidians was stable across different locations. In the field experiment initially clear bivalve shells after 5 years of exposure developed barnacle clusters with motile fauna similar to that observed in natural aggregations. Amphipods, isopods and bivalves, capitellid polychaets, Cirratulus cirratus (Müller) and Pholoe minuta Fabricius (Polychaeta) dominated in the sediment inside epibenthic patches. The proportion of capitellids, known to be sensitive to organic enrichment, was much higher within the patches than outside. The abundances of motile taxa found in aggregations were mostly determined by the number of barnacles of different size and of their empty shells, the biomass of ascidians, and the effect of location. Different dominant species demonstrated sensitivity to different parameters.Physical structure of the habitat, provided by barnacles and ascidians, as well as their biodeposition activity are regarded as the main factors structuring the motile fauna in the community studied. The spatial pattern observed seems to imply a range of pattern-generating biogenic processes, similar to those previously revealed in patches of filter-feeding bivalves, tube-building worms and seagrass.  相似文献   

7.
The effects of harvesting of callianassid shrimp (Trypaea australiensis) on the abundance and composition of macrobenthic assemblages in unvegetated sediments of a subtropical coastal embayment in Queensland, Australia were examined using a combination of sampling and manipulative experiments. First, the abundance and composition of the benthic infauna in an area regularly used for the collection of shrimp for bait by recreational anglers was compared with multiple reference areas. Second, a BACI design, with multiple reference areas, was used to examine the short-term effects of harvesting on the benthic assemblages from an intensive commercialised fishing competition. Third, a large-scale, controlled manipulative experiment, where shrimp were harvested from 10,000 m2 plots at intensities commensurate with those from recreational and commercial operators, was done to determine the impacts on different components of the infaunal assemblage.

Only a few benthic taxa showed significant declines in abundance in response to the removal of ghost shrimp from the unvegetated sediments. There was evidence, however, of more subtle effects with changes in the degree of spatial variation (patchiness) of several taxa as a result of harvesting. Groups such as capitellid polychaetes, gammarid amphipods and some bivalves were significantly more patchy in their distribution in areas subjected to harvesting than reference areas, at a scale of tens of metres. This scale corresponds to the patterns of movement and activity of recreational harvesters working in these areas. In contrast, patchiness in the abundance of ghost shrimp decreased significantly under harvesting at scales of hundreds of metres, in response to harvesters focussing their efforts on areas with greater numbers of burrow entrances, leading to a more even distribution of the animals. Controlled experimental harvesting caused declines in the abundance of soldier crabs (Mictyris longicarpus), polychaetes and amphipods and an increase in the spatial patchiness of polychaetes. Populations of ghost shrimp were, however, resilient to harvesting over extended periods of time. In conclusion, harvesting of ghost shrimp for bait by recreational and commercial fishers causes significant but localised impacts on a limited range of benthic fauna in unvegetated sediments, including changes in the degree of spatial patchiness in their distribution.  相似文献   


8.
The temporal variation of the gastropod fauna inhabiting sandy sediments of the Ensenada de Baiona (Galicia, Spain) was studied at three subtidal sites from February 1996 to February 1997 by means of quantitative sampling. A total of 5,463 individuals representing 51 gastropod species and 22 families were found. The family Pyramidellidae was the most diverse in number of species (11 species), followed by Rissoidae and Trochidae (4 species each). The dogwhelk, Nassarius reticulatus, and the rissoid snail, Rissoa parva, were the numerically dominant species at the three studied sites; those and other abundant species showed their greatest densities by the end of summer and the beginning of autumn. In general, univariate measures of the assemblage (number of species, abundance, diversity and evenness) showed variations through time; greater values were recorded between summer and autumn depending on the site. Multivariate analyses done on abundance data showed certain seasonality in the evolution of the assemblage as expected for shallow subtidal sandy sediments at temperate latitudes; those seasonal changes were mostly related to variations in abundance of numerically dominant species. Although the measured sedimentary variables did not show significant correlations with faunal univariate parameters, sediment heterogeneity due to the presence of mats of Zostera marina L. and shells of dead bivalves might explain the differences in composition of the gastropod assemblage among sampling sites.  相似文献   

9.
Temporal and spatial variability of the Abra alba–Pectinaria koreni and Macoma balthica communities was examined in the northern part of the Seine estuary (North Channel) over different space and time scales in order to assess the role that the hydrologic regime and/or anthropogenic influences play in defining benthic communities over time. Sediment in the North Channel displayed strong spatial and temporal variability, sustained by intense sediment transport episodes. Total macrobenthic abundances ranged widely on the course of the year and there was no evidence of a seasonal signal for the density fluctuations, whatever the spatial scale considered. The bio-sedimentary dynamics can be divided into two periods: the first corresponds to the high flow rate period (January–May) during which fauna is influenced by fine silt/clay deposition, and the second to the low flow rate period (June–December) during which sandy deposits prevail. Despite the absence of significant correlations between sediment composition and abundance, episodes of sediment transport seem to be an important structuring mechanism in the Seine estuary. As a consequence, the faunal composition varied throughout the year. The winter and spring fauna, characterised by species living on muddy fine-sands or muds, were enriched during the summer and autumn by species living in clean fine sand, such as Donax vittatus, Nephtys cirrosa or Spio decoratus, mainly represented by adult individuals. Secondary settlement of drifters may explain the rapid structuration of assemblages a few days after the sandy deposits. Our results suggest the importance of the bentho-pelagic coupling, primarily induced by the sedimentary instability, on the macrobenthic fauna dynamics. The intra-annual variability of assemblages at the mouth of the Seine river and the silted situation of the North Channel might simply be the result of the silting up and alteration of the inner estuary, generated by several decades of man-made modifications and natural processes.  相似文献   

10.
11.
New alluroidids (Annelida,Clitellata) from Guyana   总被引:1,自引:0,他引:1  
Omodeo  Pietro  Coates  Kathryn A. 《Hydrobiologia》2001,457(1-3):39-47
A total of 30 microbialites at two sites in Lake Clifton, Yalgorup National Park, Western Australia, were sampled by coring to quantify the associated fauna with these organo-sedimentary structures. Twenty five species of aquatic fauna were recorded from the cores, comprising 20 species of metazoan, predominantly Crustacea (including Melita kauerti (Amphipoda), Exosphaeroma cf. serventii (Isopoda); and Cyprideis australiensis(Ostracoda); Polychaeta (Capitella cf. capitata); nematodes; and five species of Foraminifera (Protista). Multivariate analysis of the five numerically most abundant taxa (amphipods, isopods, ostracods, polychaetes, nematodes) separated microbialites by season and submergence. Numbers of all taxa, particularly polychaetes and amphipods, were much higher in spring than in autumn, and in permanently-inundated than in seasonally-inundated microbialites. The exception was higher numbers of juvenile polychaetes in seasonally-inundated microbialites at the northern site in spring. This study showed that modern thrombolitic microbialites can co-exist with a diverse invertebrate fauna and serves as a baseline for future studies of interactions between microbialites and fauna.  相似文献   

12.
Species richness and abundance are biodiversity metrics widely used to describe and estimate changes in biodiversity. Studies of marine species richness and abundance typically focus on one, or just a few, taxa. Consequently, it is currently not possible to understand the performance of predictors of species richness and abundance across marine taxa. Using a taxonomically comprehensive dataset of twelve major taxa of flora and fauna from eight phyla sampled from the inter‐reef seabed region of the Great Barrier Reef, Australia, we used boosted regression trees to test the performance of fourteen environmental and spatial predictors of species richness and abundance. Sediment composition predicted richness best for all taxa: gravel contributed up to 39% relative influence for one group and all taxa had low richness in muddy habitats. Sea surface temperature, seabed current shear stress, depth and latitude were also influential predictors for species richness for eight groups. Sediment was frequently an influential predictor for abundance also, while distance to domain (reef/coast) and longitude were relatively influential for six taxa. Within‐site richness was correlated between nearly all pairs of taxa, as was within‐site abundance, however ρ values were low. Overall, model performance was high, explaining up to 62% deviance of species richness, and 38% of abundance. Typically, deviance explained was greater for richness than abundance and may indicate that some drivers of species richness operate independently of any effects on species richness mediated by their effect on abundance. Deviance explained differed most between richness and abundance for bryozoans (23.3% difference) and soft corals (15.2% difference). While sediments were consistently the best predictors across all taxa, the inconsistent influence of all other predictors across taxonomic groups, as well as the low correlation of richness and abundance across taxonomic groups, cautions against predicting regional patterns of species richness and abundance from few taxa.  相似文献   

13.
This study describes the feeding habits of plaice Pleuronectes platessa and dab Limanda limanda during early juvenile development and relates differences between nursery grounds and sampling years to spatial and temporal variabilities in macrobenthic prey availability. The main prey taxa of both species were copepods, bivalves, amphipods, polychaetes and oligochaetes and size-related variation in diet was found. Despite considerable similarity in the prey items, differences in food composition between the two species were observed and spatial variability in diet confirmed their opportunistic feeding behaviour. A high degree of dietary overlap was found in June and decreased steadily throughout the season. The prey composition in the guts of both species largely reflected the composition of the main macrobenthic taxa in the sediment. The overall data suggest that resources were not limiting in the littoral sandy nursery areas in the west of Ireland and no indications were found that exploitative competitive forces upon the benthic prey assemblages occurred between P. platessa and L. limanda. Feeding success, Fulton's K condition and dietary overlap, however, showed spatial and temporal variations, and were probably affected by the availability and density of macrobenthic prey.  相似文献   

14.
Zhu J  Jing K  Gan X J  Ma Z J 《农业工程》2007,27(6):2149-2159
The wetland in Chongming Dongtan, China is an important stopover site for migratory shorebirds along the East Asian-Australasian Flyway. The high-abundance macrobenthos in Chongming Dongtan allow migratory birds to refuel during the stopover. This study analyzed the distribution and density of macrobenthos in the intertidal zone. Results showed that the macrobenthos mainly consisted of gastropods, bivalves, polychaetes, crustaceans and insect larvae. The density of gastropods [(2805 ± 360) ind./m2] was the highest, accounting for up to 80% of the total macrobenthos density. Meanwhile, bivalves [(51.4 ± 7.8) g/m2] and gastropods [(38.7 ± 5.1) g/m2] together accounted for more than 90% of the total biomass. On the other hand, there were significant differences in the distribution of macrobenthos among different intertidal zones. Gastropods were mainly confined to the Scirpus zones, and bivalves to the outer Scirpus zone and the muddy and sandy flats. In terms of the spatial distribution of density, the gastropod density was higher in the north but lower in the south. However, no significant difference was found in the density and biomass of macrobenthos groups between spring and autumn, except that the density of bivalves in autumn was significantly higher than that in spring (P < 0.001).  相似文献   

15.
迁徙停歇期鸻鹬类在崇明东滩潮间带的食物分布   总被引:1,自引:0,他引:1  
朱晶  敬凯  干晓静  马志军 《生态学报》2007,27(6):2149-2159
崇明东滩是鸻鹬类在东亚-澳大利西亚迁徙路线上重要的迁徙停歇地,滩涂上的底栖动物为迁徙的候鸟提供了丰富的食物来源。采用圆筒取样法对崇明东滩潮间带的大型底栖动物群落进行了研究。研究表明,该区域的大型底栖动物主要有腹足类、双壳类、甲壳类、多毛类环节动物及昆虫幼虫等类群。其中以腹足类密度最高((2805±360)个/m^2),约占底栖动物总密度的80%。其次为双壳类,密度为(320±31)个/m^2。双壳类的生物量(湿重)为(51.4±7.8)g/m^2,腹足类(38.7±5.1)g/m^2,两者占底栖动物总生物量的90%以上。不同类群的底栖动物在潮间带的空间分布上有显著差异。腹足类主要分布在海三棱藨草带,双壳类在海三棱藨草外带至光滩区域分布较多。从空间分布来看,腹足类在崇明东滩的北部区域分布较多,在南部区域则明显减少。双壳类在南北各条样线上的平均密度没有显著差异。除双壳类在秋季迁徙期的密度高于春季迁徙期外(P〈0.001),其他类群的底栖动物在春季和秋季迁徙期的密度均无显著差异(P〉0.05)。  相似文献   

16.
Kelp forests are highly productive and species‐rich benthic ecosystems in temperate regions that provide biogenic habitat for numerous associated species. Diverse epifaunal communities inhabit kelp sporophytes and are subject to variations in the physical environment and to changes experienced by the kelp habitat itself. We assessed seasonal variations in epifaunal invertebrate communities inhabiting giant kelps, Macrocystis pyrifera, and their effects on this seaweed. Six seasonal samplings were conducted over a year at an upwelling‐dominated site in northern‐central Chile where physical conditions are known to fluctuate temporally. More than 30 taxa were identified, among which peracarid crustaceans stood out in both diversity and abundance. Species richness and abundance differed among sporophyte sections (holdfast and fronds) and throughout the year. The frond community was dominated by two grazers (the amphipod Peramphithoe femorata and the isopod Amphoroidea typa), while suspension feeders, grazers, and omnivores (the amphipod Aora typica, the isopod Limnoria quadripunctata, and polychaetes) dominated the holdfasts. Abundances of the dominant species fluctuated throughout the year but patterns of variation differed among species. The most abundant grazer (P. femorata) had highest densities in summer, while the less abundant grazer (A. typa) reached its peak densities in winter. Interestingly, the area of kelp damaged by grazers was highest in autumn and early winter, suggesting that grazing impacts accumulate during periods of low kelp growth, which can thus be considered as ‘vestiges of herbivory past.’ Among the factors determining the observed seasonal patterns, strong variability of environmental conditions, reproductive cycles of associated fauna, and predation by fishes vary in importance. Our results suggest that during spring and early summer, bottom‐up processes shape the community structure of organisms inhabiting large perennial seaweeds, whereas during late summer and autumn, top‐down processes are more important.  相似文献   

17.
Year to year variation and vertical distributions of epipelagic Zooplankton around Elephant Island and King George Island were examined with samples collected with bongo nets and a 1 m2 MOCNESS during the austral summers (Jan–Feb.) of 1988, 1989 and 1990. Copepods were the major components of epipelagic Zooplankton (in numbers) with dominance of Metridia gerlachei (1988 and 1989) and small calanoids and cyclopoids (1990). Euphausiids and salps were the next most abundant groups. The percent composition of euphausiids decreased from 1988 to 1990 while that of salps increased. The abundance of salps exceeded euphausiids and major taxa of copepods in 1990. Local patches of polychaetes and amphipods were also found. Statistically significant annual variations with increased numbers in 1990 were found by analyses of variance in total abundance, abundances of copepods, salps, chaetognaths and amphipods, but abundances of euphausiids, polychaetes and fishes showed no significant annual variations. When the study area was divided geographically, horizontal variability in abundance within each year showed no significance in total abundance, abundances of copepods, euphausiids, amphipods and fishes, but significance in salps, polychaetes and chaetognaths. Results of site clustering based on covariances of abundances of eleven major taxa were well matched, though not perfect, with the distribution of surface water temperatures which could be used as a tracer of source water masses suggesting that spatial variation was related to hydrodynamic conditions. Factor analyses showed that annual and spatial variations in abundance were mainly caused by only two taxa, Metridia gerlachei and salps (mostly Salpa thompsoni). These two taxa were responsible for about 60% and 30% of total variance, respectively, and were useful indicators of the interannual variation. That is, 1988 and 1989 were the years of M. gerlachei, and 1990 was the year of salps. From vertically stratified MOCNESS samples, it was shown that the major taxa in this study area were active vertical migrators. While most samples obtained by relatively shallow tows (uppermost 100 m depth) were composed of exclusively one or two taxa, those from relatively deep tows (down to 200 m) showed various patterns of vertical stratification suggesting that the patterns of vertical migration were species specific. Species specific ontogenetic vertical migration associated with elevated habitat temperatures also seemed to be responsible for the annual variation in zooplankton distribution in the upper water column.  相似文献   

18.
The distribution and abundance of subtidal meiofauna in Mandovi estuary of Goa were studied from June 1983 to June 1984. Monthly faunal abundance ranged from 491 to 2791/10 cm2 and dry weight biomass from 0.16 to 2.80 mg 10 cm2. Free living nematodes were the dominant group contributing over 75% of the total density and 30 to 42% of the total biomass. Among nematodes the deposit feeders were more abundant in fine muddy substratum while epigrowth feeders dominated in sandy substratum.Harpacticoids were next, comprising 6.9 to 8.7% of the total meiofauna number, followed by turbellaria (3.8–4.5%), polychaeta (2.8–3.2%) and ostracods (1.6–4.5%) The contribution of other groups to faunal density was 4.5–6.2%. In the biomass the ostracods contributed most (29.8–54.7%), followed by nematodes (23.8–34.6%). Over 60% of the fauna occurred in the top 2 cm of the sediment and the faunal density reduced significantly with increasing depth in the sediment. The vertical distribution of meiofauna was positively correlated to the vertical distribution of Eh, chlorophyll a and interstitial water. Seasonality was greatly influenced by the south-west monsoon and the fauna quickly repopulated after the monsoon. Salinity, temperature and food influenced the faunal abundance.  相似文献   

19.
Macrobenthos of the subtidal Wadden Sea: revisited after 55 years   总被引:4,自引:0,他引:4  
During the years 1923–1926 Hagmeier & Kändler (1927) sampled the macrofauna of subtidal shallows and channels of the Wadden Sea close to the Island of Sylt (German Bight, North Sea). Reinvestigating this study area in 1980, a substantially altered faunal composition was recorded. An approach is made to quantify the comparison in terms of abundance, species richness and diversity of invertebrate taxa. Human interference is assumed to be responsible for the major changes. Natural oyster beds have been overexploited and the local population ofOstrea edulis has been driven to extinction. Subsequently, mussels(Mytilus edulis) spread in the entire region, promoted by shell fishery. Particularly barnacles and many polychaetes took advantage of the expansion of mussel banks which is substantiated by correlation analysis. Reefs of the colonial polychaeteSabellaria spinulosa stood in the way of shrimp trawling and became destroyed together with the associated fauna. A subtidalZostera marina bed was wiped out in 1934 by a natural epidemic disease but never succeeded in reestablishing itself. The associated fauna disappeared. Large epibenthic predators and scavengers (crabs, snails and starfish) survived all these changes. The total number of species remained approximately at the same level but molluscs experienced losses and polychaetes diversified. Overall abundance increased with a disproportionately large share of a few species(Mytilus edulis, Balanus crenatus, Cerastoderma edule, Scoloplos armiger). The subtidal fauna of the Wadden Sea proved to be vulnerable to human disturbance; thus, the present community can no longer be viewed as the outcome of entirely natural processes.  相似文献   

20.
Composition, abundance and stratification of soft-bottom macrobenthos were studied at three selected sites on the Ross Sea shelf (Antarctica) with different geomorphology and sedimentation regimes. Sites A (southwest Ross Sea, 810 m depth) and B (Joides basin, 580 m depth) were characterized by biogenic mud and clay sediments, whereas site C (Mawson bank, 450 m depth) featured sandy sediments mixed with a conspicuous biogenic component characterized by shells and tests of calcareous invertebrates (mainly barnacles of the genus Bathylasma). The macrofauna of sites A and B was mainly composed of infaunal polychaetes and bivalves. The assemblages comprised both surface and sub-surface deposit feeders, including some conveyor-belt polychaetes (Maldanidae and Capitellidae) that are responsible for high sediment mixing and bioturbation. The macrobenthos of site C was dominated by crustaceans, polychaetes and echinoderms (ophiuroids), and mainly by filter feeders and epifaunal or interstitial forms. Abundances were higher (up to 1040 ind. m−2) at site B than at sites A and C (430 and 516 ind. m−2, respectively). At sites A and B the benthos was mainly concentrated in the upper 5 cm of the sediment, and abundances declined sharply in the deeper sediment layers. These results indicate a high degree of consistency between sediment features and benthic community structure, which are both strongly related to local hydrography and bottom dynamics. Sites A and B represent areas where the organic input to the seafloor by vertical sedimentation from the upper water column is high. Site C, however, is characterized by high sediment instability and food particles advecting mainly horizontally. The community is more physically controlled by unpredictable, and probably frequent, disturbance events (e.g., bottom turbid currents, sediment reworking and displacement). Individuals were relatively small, indicating that probably they are not able to grow up to the adult size and reproduce. The community may be represented by “pseudopopulations” depending on the settlement of larvae invading from neighbouring areas. Accepted: 23 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号