首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary producers respond to climate directly and indirectly due to effects on their consumers. In the temperate coastal ocean, the highly productive brown algae known as kelp have both strong climate and grazer linkages. We analyzed the demographic response of the kelp Pleurophycus gardneri over a 25‐year span to determine the interaction between ocean climate indicators and invertebrate infestation rates. Pleurophycus hosts amphipod species that burrow in the stipe, increasing mortality. Although kelp performance is generally greater with more negative values of the Pacific Decadal Oscillation (PDO) and colder seawater temperatures, Pleurophycus showed the opposite pattern. When we compared the 1990s, a period of positive values for the PDO and warmer sea surface temperatures, with the following decade, a period characterized by negative PDO values, we documented a contradictory outcome for proxies of kelp fitness. In the 1990s, Pleurophycus unexpectedly showed greater longevity, faster growth, greater reproductive effort, and a trend toward decreased amphipod infestation compared with the 2006–2012 period. In contrast, the period from 2006 to 2012 showed opposite kelp performance patterns and with a trend toward greater amphipod infestation. Pleurophycus performance metrics suggest that some coastal primary producers will respond differently to climate drivers, particularly if they interact strongly with grazers.  相似文献   

2.
3.
Macroalgal rafts frequently occur floating in coastal waters of temperate regions of the world’s oceans. These rafts are considered important dispersal vehicles for associated organisms with direct development. However, environmental factors may limit the floating potential of kelp and thereby the dispersal of associated organisms. To examine the effect of water temperature and grazing on growth, reproductive output, and survival of floating Macrocystis spp., experiments were conducted in outdoor tanks during austral summer 2006/2007 at three sites along the Chilean Pacific coast (20° S, 30° S, 40° S). At each site, Macrocystis spp. was maintained individually at three different water temperatures (ambient, ambient − 4°C, ambient + 4°C) and in the presence or absence of the amphipod grazer Peramphithoe femorata for 14 d. High water temperatures (>20°C) provoked rapid degradation of Macrocystis spp. rafts. At moderate temperatures (15°C–20°C), algal survival depended on the presence of associated grazers. In the absence of grazers, algal rafts gained in biomass while grazing caused considerable losses of algal biomass. Algal survival was the highest under cooler conditions (<15°C), where raft degradation was slow and grazer-induced biomass losses were compensated by continuing algal growth. Our results indicate that floating kelp rafts can survive for long time periods at the sea surface, but survival depends on the interaction between temperature and grazing. We suggest that these processes limiting the survival of kelp rafts in warmer temperatures may act as a dispersal barrier for kelp and its associated passengers.  相似文献   

4.
Compensation of tissue loss has been considered an alternative strategy for seaweeds that have no or only minor chemical or structural defense against herbivory. Compensatory responses are facilitated by resource transfer among different tissues and have been suggested for large kelps. Macrocystis integrifolia (Bory) is a common kelp species from northern-central Chile, which is characterized by high growth rates and the absence of lipophilic chemical defenses against herbivore grazing. Herein, we used the giant kelp M. integrifolia to test for compensatory growth in response to grazing by the nest-dwelling amphipod Peramphithoe femorata (Krøyer). Amphipods were allowed to graze inside nests on subapical blades of M. integrifolia sporophytes for 14 days. We measured growth and chemical composition (C, N, laminaran and mannitol) of apical and subapical blades of grazed and ungrazed (control) sporophytes. Our results revealed the capability of M. integrifolia to maintain elongation rates in grazed subapical blades, which were similar to those of subapical blades from ungrazed sporophytes. Apical blades grew slower in grazed than in ungrazed sporophytes indicating a trade-off between apical and subapical blades when herbivores were present. Thus, compensation occurs in blades directly attacked by grazers and is probably mediated by vertical resource allocation within sporophytes to subapical blades, a suggestion supported by the fact that stipe internodes in these regions grew more on grazed sporophytes. In general, our study indicates that M. integrifolia exhibits compensatory growth against the herbivore amphipod P. femorata, and we suggest that this could be an important strategy of large kelp species to tolerate moderate grazing intensities.  相似文献   

5.
Little is known about the indirect effects of nonlethal grazing impacts in mesograzer–seaweed interactions. Using laboratory experiments, the effect of grazing by the seasonally abundant kelp‐associated gastropod Lacuna vincta on subsequent kelp consumption by one kelp‐associated (Idotea granulosa) and one nonassociated species of isopod (I. emarginata) was determined. Measurements of the toughness and elemental composition of different parts of the sporophyte of Laminaria digitata (Huds.) J. V. Lamour., as well as grazer‐induced changes in the palatability of the blade, were conducted to explore possible mechanisms of indirect effects. In situ grazing pressure was the highest between July and September, with the blade being the preferred part of the kelp sporophyte, despite missing differences in the elemental composition among kelp parts. The laboratory experiments supported our hypotheses in that kelp consumption by both species of isopods was lower on intact than on L. vincta–damaged areas of the blade. This pattern was not caused by grazing‐induced changes in blade palatability. Instead, the observed increase in isopod consumption following grazing by L. vincta resulted more likely from the combined effects of a reduction in the toughness of L. vincta–damaged kelp blades and some unknown gastropod cue(s). These results suggest that kelp‐associated and nonassociated mesograzers may benefit from the nonlethal grazing impact of L. vincta due to changes in physical traits of the seaweed. Thus, the nonlethal grazing impact by one species of mesograzer can positively modify the trophic interactions between kelp and other potential competitors, suggesting that the interactions among mesograzers might be more complex than previously assumed.  相似文献   

6.
Seagrass meadows are among the world's most productive ecosystems, and as in many other systems, genetic diversity is correlated with increased production. However, only a small fraction of seagrass production is directly consumed, and instead much of the secondary production is fueled by the detrital food web. Here, we study the roles of plant genetic diversity and grazer species diversity on detrital consumption in California eelgrass Zostera marina meadows. We used three common mesograzers—an amphipod, Ampithoe lacertosa, an isopod, Idotea resecata, and a polychaete, Platynereis bicanaliculata. Each grazer consumed eelgrass detritus at rates greater than live eelgrass or macroalgae. This detrital consumption, however, was not spread evenly over leaves shed from different eelgrass clones. Palatability and consumption varied because of genotype specific differences in leaf texture, secondary metabolites (phenolics), and nutritional quality (nitrogen). Further, detritus derived from some eelgrass genotypes was palatable to all grazers, while detritus from other genotypes was preferentially consumed by only one grazer species. Under monospecific grazer assemblages, plant genetic identity but not diversity influenced detritus consumption. However, more realistic, diverse mesoconsumer communities combined with high plant‐detrital genotypic diversity resulted in greater consumption and grazer survival. These results provide a mechanism for field observations of increased mesograzer density and diversity in genetically diverse seagrass assemblages and offer a potential explanation for variation in results of resource diversity– detrital processing experiments in the literature, which often exclude macroinvertebrate taxa. More broadly, our findings support the emerging principle that biodiversity effects are strongest when diversity in both consumer and resource taxa are present.  相似文献   

7.
Damage by small herbivores can have disproportionately large effects on the fitness of individual plants if damage is concentrated on valuable tissues or on select individuals within a population. In marine systems, the impact of tissue loss on the growth rates of habitat-forming algae is poorly understood. We quantified the grazing damage by an isopod Amphoroidea typa on two species of large kelps, Lessonia spicata and Macrocystis pyrifera, in temperate Chile to test whether non-lethal grazing damage could reduce kelp growth rates and photosynthetic efficiency. For L. spicata, grazing damage was widespread in the field, unevenly distributed on several spatial scales (among individuals and among tissue types) and negatively correlated with blade growth rates. In field experiments, feeding by A. typa reduced the concentration of photosynthetic pigments and led to large reductions (~80 %) in blade growth rates despite limited loss of kelp biomass (0.5 % per day). For M. pyrifera, rates of damage in the field were lower and high densities of grazers were unable to reduce growth rates in field experiments. These results demonstrate that even low per capita grazing rates can result in large reductions in the growth of a kelp, due the spatial clustering of herbivores in the field and the selective removal of photosynthetically active tissues. The impacts of small herbivores on plant performance are thus not easily predicted from consumption rates or abundance in the field, and vary with plant species due to variation in their ability to compensate for damage.  相似文献   

8.
Thompson  R.C.  Roberts  M.F.  Norton  T.A.  Hawkins  S.J. 《Hydrobiologia》2000,440(1-3):357-367
Distinct seasonal variations in the abundance of photosynthetic microbiota and limpet grazing intensity were recorded at Port St Mary, Isle of Man between January 1994 and June 1996. Microbial abundance was negatively correlated with insolation stress, while grazing intensity was positively correlated with sea and air temperature. These patterns result in a mis-match between the supply of and the demand for microbial resources with maximal grazing intensity during the summer and autumn, but maximal microbial standing stock during the winter and early spring. The importance of top-down control of microbial assemblages by grazing was demonstrated by experimental exclusion of limpets during autumn 1993. This resulted in a four-fold increase in the abundance of cyanobacteria within 6 days, followed by a more gradual proliferation of ephemeral algae during the next 4 weeks. The abundance of diatoms remained relatively constant and was not influenced by the removal of grazers at this time of year. The influence of microbial resource availability on the growth and mortality of limpets was examined using experimental enclosures of differing densities of either Patella vulgata or P. depressa. After 6 months, there were significant relationships between grazer density and both mortality and growth with increased mortality and reduced growth for P. vulgata at increased densities, and reduced growth for P. depressa at increased densities. Hence, the availability of microbial resources may also influence the biomass of grazers on rocky shores from the bottom upwards. A conceptual model is presented which describes seasonal and annual variations in microbial resources and grazing intensity and their potential consequences for other shore dwellers.  相似文献   

9.
We studied the seasonal growth potential of opportunistic bacterial populations in Lake Zurich (Switzerland) by a series of grazer‐free dilution culture assays. Pronounced shifts in the composition of the bacterial assemblages were observed within one doubling of total cell numbers, from initially abundant Actinobacteria to other fast‐growing microbial lineages. Small populations with growth potentials far above community average were detected throughout the year with striking seasonal differences in their respective taxonomic affiliations. Members of Cytophaga‐Flavobacteria (CF) were disproportionally proliferating only during phytoplankton blooms in spring and summer, while Beta‐ and Gammaproteobacteria showed superior growth at all other occasions. Growth rates of Alphaproteobacteria and esp. Sphingomonadaceae were significantly correlated to water temperatures and were far above community average in summer. Within the genus Flavobacterium, two species‐like populations showed a tendency for fast growth in most experiments, while four others were exclusively proliferating either during a spring or during a summer phytoplankton bloom. Their high growth potentials but low in situ abundances hint at a tight control by bacterivorous grazers and at a consequently accelerated carbon flux to higher trophic levels.  相似文献   

10.
Seasonal succession of ciliates in lake constance   总被引:3,自引:0,他引:3  
We found a recurrent seasonal pattern in abundance and composition of planktonic ciliates in Lake Constance, FRG, over a three-year period. Abundance peaks occurred in early spring and summer/autumn, while ciliate numbers were low in late spring (clear-water phase) and winter. Prostomatida and Oligotrichida dominated in early spring. They responded immediately to the phytoplankton spring bloom, while Haptorida, Peritrichida, and large Scuticociliatida (Histiobalantium) were delayed by 1 to 2 weeks. The spring community broke down at the onset of the clear-water phase.Pelagohalteria viridis containing symbiontic algae appeared shortly after this event. A highly diverse community was recorded in summer/autumn. Peritrichida, small Oligotrichida, and large Scuticociliatida reached their maxima during this season. Small Scuticociliatida were rare throughout the year and contributed moderately to total ciliate numbers only during the cold season. The observed seasonal sequence of pelagic ciliates in Lake Constance is discussed in relation to simultaneously collected data on potential food organisms and grazers.  相似文献   

11.
Grazer species effects on epilithon nutrient composition   总被引:3,自引:0,他引:3  
1. Field and laboratory experiments were conducted to investigate the excretion stoichiometry of nitrogen (N) and phosphorus (P) of two benthic macroinvertebrate grazers, the crayfish Orconectes propinquus and the snail Elimia livescens, that differ in body stoichiometry (mean body molar N : P 18 and 28, respectively). Crayfish excretion had a significantly higher ammonium : soluble reactive phosphorus (SRP) ratio in the laboratory and in three natural streams than did snails, as predicted by ecological stoichiometry theory. 2. In greenhouse recirculating artificial streams, treatments consisting of crayfish, snails, or no grazers were used to examine responses in dissolved nutrient concentrations and epilithon nutrient composition and limitation. SRP concentrations depended upon the grazer species, with the snail treatment having a higher SRP concentration than other treatments (P < 0.05). Dissolved inorganic N was not affected by grazers, but appeared to be rapidly incorporated in epilithon. 3. Epilithon N content was dependent upon the grazer species present, with the crayfish treatment having a significantly higher N content than other treatments (P = 0.001). No grazer species effects on epilithon P content were found. However, both grazer treatments had significantly lower epilithon P content than the no‐grazer treatment. 4. Traditionally, studies have focused on how grazer‐induced structural changes to epilithon can alter epilithon nutrient dynamics, but this structural mechanism could not solely explain differences in epilithon nutrient contents and ratios in the present study. Our results rather suggest that benthic grazers can alter epilithon nutrient composition and limitation via nutrient excretion. Consequently, macroinvertebrate grazers may serve as ‘nutrient pumps’ that partly regulate the availability of nutrients to algae in stream ecosystems.  相似文献   

12.
Infestation by the nest‐dwelling Ixodes hexagonus Leach and the exophilic Ixodes ricinus (Linnaeus) (Ixodida: Ixodidae) on the Northern white‐breasted hedgehog, Erinaceus roumanicus (Erinaceomorpha: Erinaceidae), was investigated during a 4‐year study in residential areas of the city of Poznań, west‐central Poland. Of 341 hedgehogs, 303 (88.9%) hosted 10 061 Ixodes spp. ticks encompassing all parasitic life stages (larvae, nymphs, females). Ixodes hexagonus accounted for 73% and I. ricinus for 27% of the collected ticks. Male hedgehogs carried significantly higher tick burdens than females. Analyses of seasonal prevalence and abundance of I. hexagonus revealed relatively stable levels of infestation of all parasitic stages, with a modest summer peak in tick abundance noted only on male hosts. By contrast, I. ricinus females and nymphs peaked in spring and declined steadily thereafter in summer and autumn, whereas the less abundant larvae peaked in summer. This is the first longterm study to evaluate the seasonal dynamics of both tick species on populations of wild hedgehogs inhabiting urban residential areas.  相似文献   

13.
Summary 1. During the low-flow period (April–October) in sunlit pools of Big Sulphur Creek (northern coastal California), the attached algal community predictably changes from an assemblage dominated by lush, upright Cladophora glomerata filaments in spring and early summer to one dominated by epilithic diatoms and blue-green algae (together=microalgae) in late summer through early autumn. Previous studies in this stream indicated that grazing by the caddisflies Helicopsyche borealis and Gumaga nigricula maintain low algal biomass during the latter part of this period. We used a combination of in situ exclusion/enclosure experiments to examine (1) the separate and combined effects of these grazers on Cladophora and microalgal assemblages, and (2) food preferences, growth, and microdistribution patterns of grazers when offered these different algal foods. 2. Grazers exerted strong but divergent effects on algal assemblages. Selective grazing on Cladophora by G. nigricula greatly accelerated the transition from upright Cladophora to epilithic microalgae, whereas selective grazing on microalgae by H. borealis dramatically reduced biomass of these forms. Grazers were largely ineffective at reducing the non-preferred algal food source (i.e. Cladophora by H. borealis, microalgae by G. nigricula). In the case of each grazer, growth was highest on the preferred algal food. Together, the activity of these grazers produced a low-biomass assemblage dominated by microalgal cells. 3. Removal of the Cladophora overstory by G. nigricula resulted in a three-fold increase in the abundance of epilithic microalgae, the preferred food of H. borealis. Elimination of Cladophora by G. nigricula can increase food availability for H. borealis and, in so doing, can indirectly facilitate the growth of this grazer during food-limited conditions. However, microdistribution of G. nigricula shifts from high overlap with H. borealis in spring and early summer when Cladophora is abundant to low overlap in late summer after Cladophora has been eliminated. This may indicate intense competition between these species for limited epilithic algae, and a concomitant movement by G. nigricula to areas in the stream where food resources are more available.  相似文献   

14.
The calcifying Conjugatophyte Oocardium stratum occurs exclusively in spring‐associated limestones (SAL) with active meteogene limestone deposition. The macroscopic colonies of Oocardium stratum form hemispherical, pinhead‐like structures with a diameter of 0.5–2.0 mm. As its autecology is still poorly understood, we focused on the seasonal development of Oocardium stratum and linked environmental factors to its abundance. The study was conducted in a rivulet in Lunz/See (Austria) for 16 months on a weekly (growing season) to monthly (winter season) basis. Oocardium colonies were found throughout the whole year, with maximum abundance during the mid‐summer months July and August. Repeated macro‐mapping of three SAL sites measuring 750 cm2 each showed a maximum Oocardium cover of around 30% in August; two smaller peaks developed in early summer and late autumn with ~10% cover. Diatom mats dominated by Cymbella excisiformis occurred in spring, autumn and winter, with more than 75% cover. The seasonal change between Oocardium and diatoms in limestone‐precipitating springs causes a typical sequence pattern of limestone layers. Redundancy analysis revealed water temperature and bicarbonate content as the main structuring factors; these control the occurrence and growth of Oocardium, reflecting season as a background variable. Optimum growth conditions for Oocardium were an alkalinity around 4.7 meq · L?1 and a water temperature around 13°C. Site openness, nitrate and dissolved carbon dioxide were inversely related to Oocardium biomass, the opposite for diatoms. Other environmental factors such as total ions or soluble reactive phosphorus had no significant influence on Oocardium stratum abundance.  相似文献   

15.
16.
Seasonal variation in densities of mobile epifauna associated with three species of subtidal brown seaweeds (Phaeophyta) was investigated over 2–3 years in northeastern New Zealand. There was strong seasonal variation in the total number of individuals per plant wet weight for epifauna inhabiting two fucalean seaweeds of the genus Carpophyllum, with epifaunal densities roughly tracking solar irradiance. In contrast, epifaunal densities on the laminarian Ecklonia radiata peaked during autumn/winter in the first two years of sampling, and during spring in the third, showing no predictable seasonal pattern of abundance. Few individual epifaunal taxa showed clear seasonal abundance patterns, even on the Carpophyllum spp. The composition of the epifaunal assemblage on each seaweed species was fairly constant over time.  相似文献   

17.
1. In some situations fish have strong top‐down effects in stream communities while in others they seem to be relatively unimportant. Differences in the impact of fish may depend on a variety of factors including the foraging mode of the fish, interactions among fish species and temporal variation in environmental conditions and species interactions. 2. We investigated the effect of brook trout (Salvelinus fontinalis) and mottled sculpin (Cottus bairdi) on lower trophic levels in Appalachian streams and whether or not interactions between these fish changed their influence. Mesocosms were placed in a headwater stream in a randomized complete block design. Within blocks, mesocosms were randomly assigned to one of the following treatments: (i) no fish; (ii) sculpin only; (iii) trout only and (iv) both sculpin and trout. Fish biomass was the same in all three fish treatments. Invertebrate density and algal biomass in mesocosms were determined after 3 weeks. We repeated the experiment in the autumn, spring and summer to test for seasonality of fish effects. 3. The effect of fish on invertebrate assemblages was seasonal and depended on prey identity. Sculpin strongly suppressed grazer abundance in spring while trout had little effect on grazers in any season. The influence of both fish on insect predators was similar and relatively constant across seasons. We found little evidence of an interaction between sculpin and trout that strongly influenced their effect on prey across seasons. 4. None of the fish treatments influenced algal biomass during any of the seasons. Algal growth was also seasonal, with a two‐ to four‐fold increase in algal biomass in spring compared to autumn and summer. 5. Our results indicate that benthic and drift feeding fish differ in their effects on some, but not all prey. Furthermore, fish effects on prey were strongly seasonal for some, but not all prey types. While the temporal context is not commonly considered, our results indicate seasonality can be an important component of predator–prey interactions in streams.  相似文献   

18.
1. Tracer experiments with two diatoms labelled with 13C (Nitzschia palea) and 15N (Fragilaria crotonensis), were conducted to investigate feeding selectivity and interspecific competition between the grazers Asellus aquaticus (Isopoda, Crustacea) and Potamopyrgus antipodarum (Hydrobiidae, Gastropoda). Conventional methods, such as cell counts and estimated biovolume, were used first to detect feeding preferences within the different grazer treatments. 2. The results revealed a significant decline in algal biovolume in all grazer treatments and no indications of active selectivity were observed. In contrast to conventional methods, measurements based on isotope signatures showed strong differences in tracer uptake, thus indicating different degrees of assimilation and digestion by the two grazers. 3. The selectivity index Q, which provides information on the uptake ratio of 13C to 15N, showed a significant time effect for both grazer species and a significant difference between single‐ and mixed‐grazer treatments for P. antipodarum. Thus, this technique enabled the direct quantification of the uptake by grazers and, therefore, served as an ideal tool for the detection of passive selectivity. 4. Our results indicate a shift in feeding preferences related to between‐species competition and a potential divergence of trophic niches when species coexist.  相似文献   

19.
Understanding the ecology and evolution of parasites is contingent on identifying the selection pressures they face across their infection landscape. Such a task is made challenging by the fact that these pressures will likely vary across time and space, as a result of seasonal and geographical differences in host susceptibility or transmission opportunities. Avian haemosporidian blood parasites are capable of infecting multiple co‐occurring hosts within their ranges, yet whether their distribution across time and space varies similarly in their different host species remains unclear. Here, we applied a new PCR method to detect avian haemosporidia (genera Haemoproteus, Leucocytozoon, and Plasmodium) and to determine parasite prevalence in two closely related and co‐occurring host species, blue tits (Cyanistes caeruleus, N = 529) and great tits (Parus major, N = 443). Our samples were collected between autumn and spring, along an elevational gradient in the French Pyrenees and over a three‐year period. Most parasites were found to infect both host species, and while these generalist parasites displayed similar elevational patterns of prevalence in the two host species, this was not always the case for seasonal prevalence patterns. For example, Leucocytozoon group A parasites showed inverse seasonal prevalence when comparing between the two host species, being highest in winter and spring in blue tits but higher in autumn in great tits. While Plasmodium relictum prevalence was overall lower in spring relative to winter or autumn in both species, spring prevalence was also lower in blue tits than in great tits. Together, these results reveal how generalist parasites can exhibit host‐specific epidemiology, which is likely to complicate predictions of host–parasite co‐evolution.  相似文献   

20.
Calanoid copepods are major components of most lacustrine ecosystems and their grazing activities may influence both phytoplankton biomass and species composition. To assess this we conducted four seasonal, in situ, grazing experiments in eutrophic Lake Rotomanuka, New Zealand. Ambient concentrations of late stage copepodites and adults of calanoid copepods (predominantly Calamoecia lucasi, but with small numbers of Boeckella delicata) were allowed to feed for nine days on natural phytoplankton assemblages suspended in the lake within 1160 litre polyethylene enclosures. The copepods reduced the total phytoplankton biomass of the dominant species in all experiments but were most effective in summer (the time of highest grazer biomass) followed by spring and autumn. In response to grazing pressure the density of individual algal species showed either no change or a decline. There were no taxa which increased in density in the presence of the copepods. The calanoid copepods suppressed the smallest phytoplankton species (especially those with GALD (Greatest Axial Linear Dimension) < µm) and there appeared to be no selection of algae on the basis of biovolume. Algal taxa which showed strong declines in abundance in the presence of the copepods include Cyclotella stelligera, Coelastrum spp., Trachelomonas spp., Cryptomonas spp., and Mallomonas akrokomos. Calanoid copepods are considered important grazers of phytoplankton biomass in this lake. The study supports the view that high phytoplankton:zooplankton biomass ratios and large average algal sizes characteristic of New Zealand lake plankton may, at least partly, be caused by year round grazing pressure on small algae shifting the competitive balance in favour of larger algal species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号