首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The utility of RFLP (restriction fragment length polymorphism), RAPD (random-amplified polymorphic DNA), AFLP (amplified fragment length polymorphism) and SSR (simple sequence repeat, microsatellite) markers in soybean germplasm analysis was determined by evaluating information content (expected heterozygosity), number of loci simultaneously analyzed per experiment (multiplex ratio) and effectiveness in assessing relationships between accessions. SSR markers have the highest expected heterozygosity (0.60), while AFLP markers have the highest effective multiplex ratio (19). A single parameter, defined as the marker index, which is the product of expected heterozygosity and multiplex ratio, may be used to evaluate overall utility of a marker system. A comparison of genetic similarity matrices revealed that, if the comparison involved both cultivated (Glycine max) and wild soybean (Glycine soja) accessions, estimates based on RFLPs, AFLPs and SSRs are highly correlated, indicating congruence between these assays. However, correlations of RAPD marker data with those obtained using other marker systems were lower. This is because RAPDs produce higher estimates of interspecific similarities. If the comparisons involvedG. max only, then overall correlations between marker systems are significantly lower. WithinG. max, RAPD and AFLP similarity estimates are more closely correlated than those involving other marker systems.Abbreviations RFLP restriction fragment length plymorphism - RAPD random-amplified polymorphic DNA - AFLP amplified fragment length polymorphism - SSR simple sequence repeat - PCR polymerase chain reaction - TBE Tris-borate-EDTA buffer - MI marker index - SENA sum of effective numbers of alleles  相似文献   

2.
We report reference‐quality genome assemblies and annotations for two accessions of soybean (Glycine max) and for one accession of Glycine soja, the closest wild relative of G. max. The G. max assemblies provided are for widely used US cultivars: the northern line Williams 82 (Wm82) and the southern line Lee. The Wm82 assembly improves the prior published assembly, and the Lee and G. soja assemblies are new for these accessions. Comparisons among the three accessions show generally high structural conservation, but nucleotide difference of 1.7 single‐nucleotide polymorphisms (snps) per kb between Wm82 and Lee, and 4.7 snps per kb between these lines and G. soja. snp distributions and comparisons with genotypes of the Lee and Wm82 parents highlight patterns of introgression and haplotype structure. Comparisons against the US germplasm collection show placement of the sequenced accessions relative to global soybean diversity. Analysis of a pan‐gene collection shows generally high conservation, with variation occurring primarily in genomically clustered gene families. We found approximately 40–42 inversions per chromosome between either Lee or Wm82v4 and G. soja, and approximately 32 inversions per chromosome between Wm82 and Lee. We also investigated five domestication loci. For each locus, we found two different alleles with functional differences between G. soja and the two domesticated accessions. The genome assemblies for multiple cultivated accessions and for the closest wild ancestor of soybean provides a valuable set of resources for identifying causal variants that underlie traits for the domestication and improvement of soybean, serving as a basis for future research and crop improvement efforts for this important crop species.  相似文献   

3.
Restriction fragment length polymorphism diversity in soybean   总被引:7,自引:0,他引:7  
Summary Fifty-eight soybean accessions from the genus Glycine, subgenus Soja, were surveyed with 17 restriction fragment length polymorphism (RFLP) genetic markers to assess the level of molecular diversity and to evaluate the usefulness of previously identified RFLP markers. In general, only low levels of molecular diversity were observed: 2 of the 17 markers exhibited three alleles per locus, whereas all others had only two alleles. Thirty-five percent of the markers had rare alleles present in only 1 or 2 of the 58 accessions. Molecular diversity was least among cultivated soybeans and greatest between accessions of different soybean species such as Glycine max (L.) Merr. and G. soja Sieb. and Zucc. Principal component analysis was useful in reducing the multidimensional genotype data set and identifying genetic relationships.  相似文献   

4.
5.
The cultivated soybean [Glycine max (L.) Merr.] is widely considered to descend from the wild soybean (G. soja Sieb. & Zucc.). This study was designed to evaluate the genetic variability and differentiation between G. soja and G. max, and to detect signatures of the selection that may have occurred during the domestication process from G. soja to G. max. A total of 192 G. soja accessions and 104 G. max accessions were genotyped using eight selected simple sequence repeat (SSR) markers assigned to three SSR groups. Four SSRs in group A were not located near any known QTL. Three SSRs in group B were associated with seed protein content, and an SSR in group C was associated with resistance to Sclerotinia stem rot. The number of alleles per locus and the level of genetic variability in G. soja were higher than those in G. max. A total of 122 out of 125 alleles were present in G. soja, but only 59 alleles were detected in G. max. The average gene diversity was 0.74 in G. soja and 0.64 in G. max. Four SSRs near QTLs of agronomic importance showed strong genetic differentiation and shift change in high frequency alleles in groups B and C between G. soja and G. max, revealing selection signatures that may reflect the domestication events and recent selective breeding. With reduced diversity in G. max, some undomesticated genes from G. soja should be prime candidates for introgression to increase the pool of diversity in G. max.  相似文献   

6.
The objective of this study was to identify quantitative trait loci (QTL) affecting fitness of hybrids between wild soybean (Glycine soja) and cultivated soybean (Glycine max). Seed dormancy and seed number, both of which are important for fitness, were evaluated by testing artificial hybrids of G. soja × G. max in a multiple‐site field trial. Generally, the fitness of the F1 hybrids and hybrid derivatives from self‐pollination was lower than that of G. soja due to loss of seed dormancy, whereas the fitness of hybrid derivatives with higher proportions of G. soja genetic background was comparable with that of G. soja. These differences were genetically dissected into QTL for each population. Three QTLs for seed dormancy and one QTL for total seed number were detected in the F2 progenies of two diverse cross combinations. At those four QTLs, the G. max alleles reduced seed number and severely reduced seed survival during the winter, suggesting that major genes acquired during soybean adaptation to cultivation have a selective disadvantage in natural habitats. In progenies with a higher proportion of G. soja genetic background, the genetic effects of the G. max alleles were not expressed as phenotypes because the G. soja alleles were dominant over the G. max alleles. Considering the highly inbreeding nature of these species, most hybrid derivatives would disappear quickly in early self‐pollinating generations in natural habitats because of the low fitness of plants carrying G. max alleles.  相似文献   

7.
Annual wild soybean (Glycine soja Sieb. et Zucc.) is believed to be a potential gene source for future soybean improvement in coping with the world climate change for food security. To evaluate the wild soybean genetic diversity and differentiation, we analyzed allelic profiles at 60 simple-sequence repeat (SSR) loci and variation of eight morph-biological traits of a representative sample with 196 accessions from the natural growing area in China. For comparison, a representative sample with 200 landraces of Chinese cultivated soybean was included in this study. The SSR loci produced 1,067 alleles (17.8 per locus) with a mean gene diversity of 0.857 in the wild sample, which indicated the genetic diversity of G. soja was much higher than that of its cultivated counterpart (total 826 alleles, 13.7 per locus, mean gene diversity 0.727). After domestication, the genetic diversity of the cultigens decreased, with its 65.5% alleles inherited from the wild soybean, while 34.5% alleles newly emerged. AMOVA analysis showed that significant variance did exist among Northeast China, Huang-Huai-Hai Valleys and Southern China subpopulations. UPGMA cluster analysis indicated very significant association between the geographic grouping and genetic clustering, which demonstrated the geographic differentiation of the wild population had its relevant genetic bases. In comparison with the other two subpopulations, the Southern China subpopulation showed the highest allelic richness, diversity index and largest number of specific-present alleles, which suggests Southern China should be the major center of diversity for annual wild soybean. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
MADS-box genes are involved in plant reproductive development. However, the role of gene nucleotide diversity in soybean flowering and maturity remains unknown. Therefore, in this study, the distribution of DNA polymorphisms in the putative MADS-box gene located near the quantitative trait loci (QTL) for flowering time and maturity was targeted for association analysis using Glycine max (cultivated soybean) and Glycine soja (wild soybean). Sixteen single nucleotide polymorphisms identified in the upstream region of the putative MADS-box gene around QTL Pod mat 13-7 and Fflr 4-2 on chromosome 7 were found to be highly associated with maturity in soybean. The genetic diversity between cultivated soybeans and the wild relative was comparable, although the early maturity group (EMG) was less diverse than the late maturity group (LMG) of the cultivated soybean. Population size changes of the MADS-box gene in this soybean germplasm appeared to result from non-random selection. A selective pressure seemed to act on this gene in the EMG, while the LMG and G. soja were in genetic equilibrium. Neutrality tests and the constructed neighbor-joining tree indicate that the EMG of G. max has experienced strong artificial selection for its domestication and genetic improvement.  相似文献   

9.
DNA amplification fingerprinting (DAF) using a high primer-to-template ratio and single, very short arbitrary primers, was used to generate amplified fragment length polymorphic markers (AFLP) in soybean (Glycine max (L.) Merr.). The inheritance of AFLPs was studied using a cross between the ancestral Glycine soja PI468.397 and Glycine max (L.) Merr. line nts382, F1 and F2 progeny. The amplification reaction was carried out with soybean genomic DNA and 8 base long oligounucleotide primers. Silver-stained 5% polyacrylamide gels containing 7 M urea detected from 11 to 28 DAF products with primers of varying GC content (ranging from 50 to 100% GC). Depending on their intensity, AFLPs were classified into three classes. DAF profiles were reproducible for different DNA extractions and gels. Forty AFLPs were detected by 26 primers when comparing G. soja and G. max. Most AFLPs were inherited as dominant Mendelian markers in F1 and F2 populations. However, abnormal inheritance occured with about 25% of polymorphisms. One marker was inherited as a maternal marker, presumably originating from organelle DNA while another showed apparent paternal inheritance. To confirm the nuclear origin and utility of dominant Mendelian markers, three DAF polymorphisms were mapped using a F11 mapping population of recombinant inbred lines from soybean cultivars Minsoy × Noir 1. The study showed that DAF-generated polymorphic markers occur frequently and reliably, that they are inherited as Mendelian dominant loci and that they can be used in genome mapping.  相似文献   

10.
Summary This study was conducted with the objective of determining the genomic relationship between cultivated soybean (Glycine max) and wild soybean (G. soja) of the subgenus Soja, genus Glycine. Observations on cross-ability rate, hybrid viability, meiotic chromosome pairing, and pollen fertility in F 1 hybrids of G. max × G. soja and reciprocals elucidated that both species hybridized readily and set mature putative hybrid pods, generated vigorous F1 plants, had a majority of sporocytes that showed 18II + 1IV chromosome association at diakinesis and metaphase I, and had a pollen fertility that ranged from 49.2% to 53.3%. A quadrivalent was often associated with the nucleolus, suggesting that one of the chromosomes involved in the interchange is a satellited chromosome. Thus, G. max and G. soja genetic stocks used in this study have been differentiated by a reciprocal translocation. Pachytene analysis of F1 hybrids helped construct chromosome maps based on chromosome length and euchromatin and heterochromatin distribution. Chromosomes were numbered in descending order of 1–20. Pachytene chromosomes in soybean showed heterochromatin distribution on either side of the centromeres. Pachytene analysis revealed small structural differences for chromosomes 6 and 11 which were not detected at diakinesis and metaphase I. This study suggests that G. max and G. soja carry similar genomes and validates the previously assigned genome symbol GG.Research supported in part by the Illinois Agricultural Experiment Station and U.S. Department of Agriculture Competitive Research Grant (85-CRCR-1-1616)  相似文献   

11.
Cultivated soybean (Glycine max) suffers from a narrow germplasm relative to other crop species, probably because of under‐use of wild soybean (Glycine soja) as a breeding resource. Use of a single nucleotide polymorphism (SNP) genotyping array is a promising method for dissecting cultivated and wild germplasms to identify important adaptive genes through high‐density genetic mapping and genome‐wide association studies. Here we describe a large soybean SNP array for use in diversity analyses, linkage mapping and genome‐wide association analyses. More than four million high‐quality SNPs identified from high‐depth genome re‐sequencing of 16 soybean accessions and low‐depth genome re‐sequencing of 31 soybean accessions were used to select 180 961 SNPs for creation of the Axiom® SoyaSNP array. Validation analysis for a set of 222 diverse soybean lines showed that 170 223 markers were of good quality for genotyping. Phylogenetic and allele frequency analyses of the validation set data indicated that accessions showing an intermediate morphology between cultivated and wild soybeans collected in Korea were natural hybrids. More than 90 unanchored scaffolds in the current soybean reference sequence were assigned to chromosomes using this array. Finally, dense average spacing and preferential distribution of the SNPs in gene‐rich chromosomal regions suggest that this array may be suitable for genome‐wide association studies of soybean germplasm. Taken together, these results suggest that use of this array may be a powerful method for soybean genetic analyses relating to many aspects of soybean breeding.  相似文献   

12.
Despite the economical importance of shiitake (Lentinula ssp.) mushrooms, until the present date little information exists on cultivated and wild species in correlation with geographic origin applying molecular techniques. Use of a high resolution molecular tool like AFLP for assessing genetic similarity and geographical diversity would be an important step towards understanding of different Lentinula species. Thirteen wild and 17 cultivated accessions of 3 Lentinula species were analysed with 64 EcoRI–MseI primer combinations and finally 32 reproducible and polymorphic primer combinations were considered for the analysis. A total of 816 informative AFLP markers were generated and scored as binary data. These data were analysed using various method packages for cluster analysis, genetic diversity and genetic differentiation. Percentage polymorphism was high (62.99%) among the species studied. Different clustering analysis segregated the wild and the cultivated species into two major branches, with the wild samples being further grouped according to their geographic location. Overall polymorphisms among cultivated strains in the USA were higher than that of the cultivated strains in Japan (58.9%).  相似文献   

13.
5S ribosomal gene variation in the soybean and its progenitor   总被引:1,自引:0,他引:1  
Summary The soybean, Glycine max and its wild progenitor, Glycine soja, have been surveyed for repeat length variation for the nuclearly encoded 5S ribosomal RNA genes. There is little variation among the 33 accessions assayed, with a common repeat length of 345 bases being typical of both taxa. A 334 base size variant was encountered in individuals from two populations of G. soja from China. The low level of variability is in marked contrast to the variation observed within and between the species of the perennial subgenus Glycine.  相似文献   

14.
In certain plant species including cotton (Gossypium hirsutum L. or Gossypium barbadense L.), the level of amplified fragment length polymorphism (AFLP) is relatively low, limiting its utilization in the development of genome-wide linkage maps. We propose the use of frequent restriction enzymes in combination with AFLP to cleave the AFLP fragments, called cleaved AFLP analysis (cAFLP). Using four Upland cotton genotypes (G. hirsutum) and three Pima cotton (G. barbadense), we demonstrated that cAFLP generated 67% and 132% more polymorphic markers than AFLP in Upland and Pima cotton, respectively. This resulted in 15.5 and 25.5 polymorphic cAFLP markers per AFLP primer combination, as compared to 9.1 and 11.0 polymorphic AFLP. The cAFLP-based genetic similarity (GS) is generally lower than the AFLP-based GS, even though both marker systems are overall congruent. In some cases, cAFLP can better resolve genetic relationships between genotypes, rendering a higher discriminatory power. Given the high-resolution power of capillary-based DNA sequencing system, we further propose that AFLP and cAFLP amplicons from the same primer combination can be pooled as one sample before electrophoresis. The combination produced an average of 18.5 and 31.0 polymorphic markers per primer pair in Upland and Pima cotton, respectively. Using several restriction enzyme combinations before pre-selective amplification in combination with various frequent 4 bp-cutters or 6 bp-cutters after selective amplification, the pooled AFLP and cAFLP will provide unlimited number of polymorphic markers for genome-wide mapping and fingerprinting.  相似文献   

15.
Summary Nucleotide sequences of cDNAs encoding soybean glycinin B4 polypeptide were compared for three soybean cultivars and two introductions of wild soybean, G. soja. For three G. max cultivars, only two nucleotide substitutions were found, while G. max and G. soja nucleotide sequences had four substitutions. These data give added proof that G. max originated from G. soja. On the other hand, the time required for the accumulation of four nucleotide substitutions (calculated from the parameters of 11S globulin molecular evolution) appeared to be longer than the duration of the soybean domestication period.  相似文献   

16.
AFLP and RAPD marker techniques have been used to evaluate and study the diversity and phylogeny of 54 lentil accessions representing six populations of cultivated lentil and its wild relatives. Four AFLP primer combinations revealed 23, 25, 52 and 48 AFLPs respectively, which were used to partition variation within and among Lens taxa. The results of AFLP analysis is compared to previous RAPD analysis of the same material. The two methods provide similar conclusions as far as the phylogeny of Lens is concerned. The AFLP technique detected a much higher level of polymorphyism than the RAPD analysis. The use of 148 AFLPs arising from four primer combinations was able to discriminate between genotypes which could not be distinguished using 88 RAPDs. The level of variation detected within the cultivated lentil with AFLP analysis indicates that it may be a more efficient marker technology than RAPD analysis for the construction of genetic linkage maps between carefully chosen cultivated lentil accessions.  相似文献   

17.
The architecture and genetic diversity of mitogenome (mtDNA) are largely unknown in cultivated soybean (Glycine max), which is domesticated from the wild progenitor, Glycine soja, 5000 years ago. Here, we de novo assembled the mitogenome of the cultivar ‘Williams 82’ (Wm82_mtDNA) with Illumina PE300 deep sequencing data, and verified it with polymerase chain reaction (PCR) and Southern blot analyses. Wm82_mtDNA maps as two autonomous circular chromosomes (370 871-bp Chr-m1 and 62 661-bp Chr-m2). Its structure is extensively divergent from that of the mono-chromosomal mitogenome reported in the landrace ‘Aiganhuang’ (AGH_mtDNA). Synteny analysis showed that the structural variations (SVs) between two genomes are mainly attributed to ectopic and illegitimate recombination. Moreover, Wm82_mtDNA and AGH_mtDNA each possess six and four specific regions, which are absent in their counterparts and likely result from differential sequence-loss events. Mitogenome SV was further studied in 39 wild and 182 cultivated soybean accessions distributed world-widely with PCR/Southern analyses or a comparable in silico analysis. The results classified both wild and cultivated soybeans into five cytoplasmic groups, named as GSa–GSe and G1–G5; ‘Williams 82’ and ‘Aiganhuang’ belong to G1 and G5, respectively. Notably, except for members in GSe and G5, all accessions carry a bi-chromosomal mitogenome with a common Chr-m2. Phylogenetic analyses based on mtDNA structures and chloroplast gene sequences both inferred that G1–G3, representing >90% of cultigens, likely inherited cytoplasm from the ancestor of domestic soybean, while G4 and G5 likely inherited cytoplasm from wild soybeans carrying GSa- and GSe-like cytoplasm through interspecific hybridization, offering new insights into soybean cultivation history.  相似文献   

18.
Summary The genes encoding the 18S25S ribosomal RNA gene repeat in soybean (Glycine max) and its relatives in the genus Glycine are surveyed for variation in repeat length and restriction enzyme site locations. Within the wild species of subgenus Glycine, considerable differences in repeat size occur, with a maximum observed in G. falcata. Repeat length and site polymorphisms occur in several species, but within individual plants only single repeat types are observed. The rDNA of the cultivated soybean and its wild progenitor, G. soja are identical at the level of this study, and no variation is found in over 40 accessions of the two species. Data from rDNA mapping studies are congruent with those of previous biosystematic studies, and in some instances give evidence of divergences not seen with other approaches.  相似文献   

19.
Diacylglycerol acyltransferase (DGAT), as an important enzyme in triacylglycerol synthesis, catalyzes the final acylation of the Kennedy pathway. In the present study, the GmDGAT gene was cloned from Glycine max by using AtDGAT as a query to search against the soybean EST database and the rapid amplification of cDNA ends (RACE) method. Allelic genes were also isolated from 13 soybean accessions and the divergence of the deduced amino acid sequences were compared. The comparison reveals that although GmDGAT is a highly conserved protein, several differences of insertion/deletion were identified in the N-terminal region of the GmDGATs from various soybean accessions. In the C-terminal regions, a single amino acid mutation specific to both G. max and G. soja was also found. The GmDGAT genomic sequences were further cloned and the number and size of exons in the DGAT genomic sequence were very similar among different plant species, whereas the introns were more diverged. These results may have significance in elucidating the genetic diversity of the GmDGAT among the soybean subgenus.  相似文献   

20.
Three different DNA mapping techniques—RFLP, RAPD and AFLP—were used on identical soybean germplasm to compare their ability to identify markers in the development of a genetic linkage map. Polymorphisms present in fourteen different soybean cultivars were demonstrated using all three techniques. AFLP, a novel PCR-based technique, was able to identify multiple polymorphic bands in a denaturing gel using 60 of 64 primer pairs tested. AFLP relies on primers designed in part on sequences for endonuclease restriction sites and on three selective nucleotides. The 60 diagnostic primer pairs tested for AFLP analysis each distinguished on average six polymorphic bands. Using specific primers designed for soybean fromEco RI andMse I restriction site sequences and three selective nucleotides, as many as 12 polymorphic bands per primer could be obtained with AFLP techniques. Only 35% of the RAPD reactions identified a polymorphic band using the same soybean cultivars, and in those positive reactions, typically only one or two polymorphic bands per gel were found. Identification of polymorphic bands using RFLP techniques was the most cumbersome, because Southern blotting and probe hybridization were required. Over 50% of the soybean RFLP probes examined failed to distinguish even a single polymorphic band, and the RFLP probes that did distinguish polymorphic bands seldom identified more than one polymorphic band. We conclude that, among the three techniques tested, AFLP is the most useful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号