首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to identify quantitative trait loci (QTL) affecting fitness of hybrids between wild soybean (Glycine soja) and cultivated soybean (Glycine max). Seed dormancy and seed number, both of which are important for fitness, were evaluated by testing artificial hybrids of G. soja × G. max in a multiple‐site field trial. Generally, the fitness of the F1 hybrids and hybrid derivatives from self‐pollination was lower than that of G. soja due to loss of seed dormancy, whereas the fitness of hybrid derivatives with higher proportions of G. soja genetic background was comparable with that of G. soja. These differences were genetically dissected into QTL for each population. Three QTLs for seed dormancy and one QTL for total seed number were detected in the F2 progenies of two diverse cross combinations. At those four QTLs, the G. max alleles reduced seed number and severely reduced seed survival during the winter, suggesting that major genes acquired during soybean adaptation to cultivation have a selective disadvantage in natural habitats. In progenies with a higher proportion of G. soja genetic background, the genetic effects of the G. max alleles were not expressed as phenotypes because the G. soja alleles were dominant over the G. max alleles. Considering the highly inbreeding nature of these species, most hybrid derivatives would disappear quickly in early self‐pollinating generations in natural habitats because of the low fitness of plants carrying G. max alleles.  相似文献   

2.
The cultivated soybean [Glycine max (L.) Merr.] is widely considered to descend from the wild soybean (G. soja Sieb. & Zucc.). This study was designed to evaluate the genetic variability and differentiation between G. soja and G. max, and to detect signatures of the selection that may have occurred during the domestication process from G. soja to G. max. A total of 192 G. soja accessions and 104 G. max accessions were genotyped using eight selected simple sequence repeat (SSR) markers assigned to three SSR groups. Four SSRs in group A were not located near any known QTL. Three SSRs in group B were associated with seed protein content, and an SSR in group C was associated with resistance to Sclerotinia stem rot. The number of alleles per locus and the level of genetic variability in G. soja were higher than those in G. max. A total of 122 out of 125 alleles were present in G. soja, but only 59 alleles were detected in G. max. The average gene diversity was 0.74 in G. soja and 0.64 in G. max. Four SSRs near QTLs of agronomic importance showed strong genetic differentiation and shift change in high frequency alleles in groups B and C between G. soja and G. max, revealing selection signatures that may reflect the domestication events and recent selective breeding. With reduced diversity in G. max, some undomesticated genes from G. soja should be prime candidates for introgression to increase the pool of diversity in G. max.  相似文献   

3.
We report reference‐quality genome assemblies and annotations for two accessions of soybean (Glycine max) and for one accession of Glycine soja, the closest wild relative of G. max. The G. max assemblies provided are for widely used US cultivars: the northern line Williams 82 (Wm82) and the southern line Lee. The Wm82 assembly improves the prior published assembly, and the Lee and G. soja assemblies are new for these accessions. Comparisons among the three accessions show generally high structural conservation, but nucleotide difference of 1.7 single‐nucleotide polymorphisms (snps) per kb between Wm82 and Lee, and 4.7 snps per kb between these lines and G. soja. snp distributions and comparisons with genotypes of the Lee and Wm82 parents highlight patterns of introgression and haplotype structure. Comparisons against the US germplasm collection show placement of the sequenced accessions relative to global soybean diversity. Analysis of a pan‐gene collection shows generally high conservation, with variation occurring primarily in genomically clustered gene families. We found approximately 40–42 inversions per chromosome between either Lee or Wm82v4 and G. soja, and approximately 32 inversions per chromosome between Wm82 and Lee. We also investigated five domestication loci. For each locus, we found two different alleles with functional differences between G. soja and the two domesticated accessions. The genome assemblies for multiple cultivated accessions and for the closest wild ancestor of soybean provides a valuable set of resources for identifying causal variants that underlie traits for the domestication and improvement of soybean, serving as a basis for future research and crop improvement efforts for this important crop species.  相似文献   

4.
With the proliferation of genetically modified (GM) products and the almost exponential growth of land use for GM crops, there is a growing need to develop quantitative approaches to estimating the risk of escape of transgenes into wild populations of crop relatives by natural hybridization. We assessed the risk of transgene escape by constructing a population genetic model based on information on fitness-related QTLs obtained from an F 2 population of wild soybean G. soja × cultivated soybean Glycine max. Simulation started with ten F 1 and 990 wild soybeans reproducing by selfing or outcrossing. Seed production was determined from the genetic effects of two QTLs for number of seeds (SN). Each seed survived winter according to the maternal genotype at three QTLs for winter survival (WS). We assumed that one neutral transgene was inserted at various sites and calculated its extinction rate. The presence of G. max alleles at SN and WS QTLs significantly decreased the probability of introgression of the neutral transgene at all insertion sites equally. The presence of G. max alleles at WS QTLs lowered the risk more than their presence at SN QTLs. Although most model studies have concentrated only on genotypic effects of transgenes, we show that the presence of fitness-related domestication genes has a large effect on the risk of transgene escape. Our model offers the advantage of considering the effects of both domestication genes and a transgene, and they can be widely applied to other wild × crop relative complexes.  相似文献   

5.
MADS-box genes are involved in plant reproductive development. However, the role of gene nucleotide diversity in soybean flowering and maturity remains unknown. Therefore, in this study, the distribution of DNA polymorphisms in the putative MADS-box gene located near the quantitative trait loci (QTL) for flowering time and maturity was targeted for association analysis using Glycine max (cultivated soybean) and Glycine soja (wild soybean). Sixteen single nucleotide polymorphisms identified in the upstream region of the putative MADS-box gene around QTL Pod mat 13-7 and Fflr 4-2 on chromosome 7 were found to be highly associated with maturity in soybean. The genetic diversity between cultivated soybeans and the wild relative was comparable, although the early maturity group (EMG) was less diverse than the late maturity group (LMG) of the cultivated soybean. Population size changes of the MADS-box gene in this soybean germplasm appeared to result from non-random selection. A selective pressure seemed to act on this gene in the EMG, while the LMG and G. soja were in genetic equilibrium. Neutrality tests and the constructed neighbor-joining tree indicate that the EMG of G. max has experienced strong artificial selection for its domestication and genetic improvement.  相似文献   

6.
The wild soybean (Glycine soja), which is the progenitor of cultivated soybean (Glycine max), is expected to offer more information about genetic variability and more useful mutants for evolutionary research and breeding applications. Here, a total of 1,600 wild soybean samples from China were investigated for genetic variation with regard to the soybean Kunitz trypsin inhibitor (SKTI). A new mutant SKTI, Tik, was identified. It was found to be a Tia-derived codominant allele caused by a transversion point mutation from C to G at nucleotide +171, leading to an alteration of one codon (AAC → AAG) and a corresponding amino acid substitution (Asn → Lys) at the ninth residue. Upon examination of this variant and others previously found in wild soybeans, it became clear that SKTI has undergone high-level evolutionary differentiation. There were more abundant polymorphisms in the wild than in the cultivated soybean.  相似文献   

7.
8.
Summary Nucleotide sequences of cDNAs encoding soybean glycinin B4 polypeptide were compared for three soybean cultivars and two introductions of wild soybean, G. soja. For three G. max cultivars, only two nucleotide substitutions were found, while G. max and G. soja nucleotide sequences had four substitutions. These data give added proof that G. max originated from G. soja. On the other hand, the time required for the accumulation of four nucleotide substitutions (calculated from the parameters of 11S globulin molecular evolution) appeared to be longer than the duration of the soybean domestication period.  相似文献   

9.
Size and shape of soybean seeds are closely related to seed yield and market value. Annual wild soybeans have the potential to improve cultivated soybeans, but their inferior seed characteristics should be excluded. To detect quantitative trait loci (QTLs)/segments of seed size and shape traits in annual wild soybean, its chromosome segment substitution lines (CSSLs) derived from NN1138-2 (recurrent parent, Glycine max) and N24852 (donor parent, Glycine soja) and then modified 2 iterations (coded SojaCSSLP3) were improved further to contain more lines (diagonal segments) and less heterozygous and missing portions. The new population (SojaCSSLP4) composed of 195 CSSLs was evaluated under four environments, and 11, 13, 7, 15 and 14 QTLs/segments were detected for seed length (SL), seed width (SW), seed roundness (SR), seed perimeter (SP) and seed cross section area (SA), respectively, with all 60 wild allele effects negative. Among them, 16 QTLs/segments were shared by 2–5 traits, respectively, but 0–3 segments for each of the 5 traits were independent. The non-shared Satt274 and shared Satt305, Satt540 and Satt239 were major segments, along with other segments composed of two different but related sets of genetic systems for SR and the other 4 traits, respectively. Compared with the literature, 7 SL, 5 SW and 2 SR QTLs/segments were also detected in cultivated soybeans; allele distinction took place between cultivated and wild soybeans, and also among cultivated parents. The present mapping is understood as macro-segment mapping, the segments may be further dissected into smaller segments as well as corresponding QTLs/genes.  相似文献   

10.
Annual wild soybean (Glycine soja Sieb. et Zucc.) is believed to be a potential gene source for future soybean improvement in coping with the world climate change for food security. To evaluate the wild soybean genetic diversity and differentiation, we analyzed allelic profiles at 60 simple-sequence repeat (SSR) loci and variation of eight morph-biological traits of a representative sample with 196 accessions from the natural growing area in China. For comparison, a representative sample with 200 landraces of Chinese cultivated soybean was included in this study. The SSR loci produced 1,067 alleles (17.8 per locus) with a mean gene diversity of 0.857 in the wild sample, which indicated the genetic diversity of G. soja was much higher than that of its cultivated counterpart (total 826 alleles, 13.7 per locus, mean gene diversity 0.727). After domestication, the genetic diversity of the cultigens decreased, with its 65.5% alleles inherited from the wild soybean, while 34.5% alleles newly emerged. AMOVA analysis showed that significant variance did exist among Northeast China, Huang-Huai-Hai Valleys and Southern China subpopulations. UPGMA cluster analysis indicated very significant association between the geographic grouping and genetic clustering, which demonstrated the geographic differentiation of the wild population had its relevant genetic bases. In comparison with the other two subpopulations, the Southern China subpopulation showed the highest allelic richness, diversity index and largest number of specific-present alleles, which suggests Southern China should be the major center of diversity for annual wild soybean. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Understanding the salt resistance mechanism of wild soybean is important in improving salt tolerance of cultivated soybean. Therefore, we comparatively analyzed effects of NaCl on photosynthesis, antioxidant enzyme activity, and ion distribution in a cultivated (Glycine. max) and a wild (Glycine soja) soybean to study the salt resistance mechanism of the G. soja. The results showed that more Na+ was accumulated in the G. soja roots than in the G. max roots, but the Na+ in the G. soja leaves was much less than that observed in the G. max leaves. The Na+ concentrations in the G. soja leaves were not high enough to affect the photosynthetic apparatus, which was demonstrated by less inhibition of photosynthetic activity, stomatal conductance, carboxylation efficiency in the G. soja leaves than in the G. max leaves after treated with different concentrations of NaCl. Meanwhile, there were no significant changes in intercellular CO2 concentration, maximum PSII quantum yield, and relative water content in the G. soja leaves after NaCl treatment, while they significantly decreased in the G. max leaves. The non-photochemical quenching and the activities of superoxide dismutase (EC 1.15.1.1) and ascorbate peroxidase (EC 1.11.1.11) in the G. soja leaves increased with the increasing of NaCl concentrations, whereas only the activity of superoxide dismutase increased in G. max leaves. Based on these results, we suggested that the G. soja is able to accumulate higher levels of Na+ in its roots, and prevent the transportation of Na+ to leaves to protect photosynthetic apparatus from salt damage.  相似文献   

12.
Li  Ying-Hui  Qin  Chao  Wang  Li  Jiao  Chengzhi  Hong  Huilong  Tian  Yu  Li  Yanfei  Xing  Guangnan  Wang  Jun  Gu  Yongzhe  Gao  Xingpeng  Li  Delin  Li  Hongyu  Liu  Zhangxiong  Jing  Xin  Feng  Beibei  Zhao  Tao  Guan  Rongxia  Guo  Yong  Liu  Jun  Yan  Zhe  Zhang  Lijuan  Ge  Tianli  Li  Xiangkong  Wang  Xiaobo  Qiu  Hongmei  Zhang  Wanhai  Luan  Xiaoyan  Han  Yingpeng  Han  Dezhi  Chang  Ruzhen  Guo  Yalong  Reif  Jochen C.  Jackson  Scott A.  Liu  Bin  Tian  Shilin  Qiu  Li-juan 《中国科学:生命科学英文版》2023,66(2):350-365

Soybean is a leguminous crop that provides oil and protein. Exploring the genomic signatures of soybean evolution is crucial for breeding varieties with improved adaptability to environmental extremes. We analyzed the genome sequences of 2,214 soybeans and proposed a soybean evolutionary route, i.e., the expansion of annual wild soybean (Glycine soja Sieb. & Zucc.) from southern China and its domestication in central China, followed by the expansion and local breeding selection of its landraces (G. max (L.) Merr.). We observed that the genetic introgression in soybean landraces was mostly derived from sympatric rather than allopatric wild populations during the geographic expansion. Soybean expansion and breeding were accompanied by the positive selection of flowering time genes, including GmSPA3c. Our study sheds light on the evolutionary history of soybean and provides valuable genetic resources for its future breeding.

  相似文献   

13.
RFLP analysis of soybean seed protein and oil content   总被引:20,自引:0,他引:20  
Summary The objectives of this study were to present an expanded soybean RFLP map and to identify quantitative trait loci (QTL) in soybean [Glycine max (L.) Merr.] for seed protein and oil content. The study population was formed from a cross between a G. max experimental line (A81-356022) and a G. soja Sieb. and Zucc. plant introduction (PI 468916). A total of 252 markers was mapped in the population, forming 31 linkage groups. Protein and oil content were measured on seed harvested from a replicated trial of 60 F2-derived lines in the F3 generation (F23 lines). Each F23 line was genotyped with 243 RFLP, five isozyme, one storage protein, and three morphological markers. Significant (P<0.01) associations were found between the segregation of markers and seed protein and oil content. Segregation of individual markers explained up to 43% of the total variation for specific traits. All G. max alleles at significant loci for oil content were associated with greater oil content than G. soja alleles. All G. soja alleles at significant loci for protein content were associated with greater protein content than G. max alleles.  相似文献   

14.
15.
Amplified fragment length polymorphism (AFLP) analysis is a PCR-based technique capable of detecting more than 50 independent loci in a single PCR reaction. The objectives of the present study were to: (1) assess the extent of AFLP variation in cultivated (Gycine max L. Merr.) and wild soybean (G. soja Siebold & Zucc.), (2) determine genetic relationships among soybean accessions using AFLP data, and (3) evaluate the usefulness of AFLPs as genetic markers. Fifteen AFLP primer pairs detected a total of 759 AFLP fragments in a sample of 23 accessions of wild and cultivated soybean, with an average of 51 fragments produced per primer pair per accession. Two-hundred and seventy four fragments (36% of the total observed) were polymorphic, among which 127 (17%) were polymorphic in G. max and 237 (31%) were polymorphic in G. soja. F2 segregation analysis of six AFLP fragments indicated that they segregate as stable Mendelian loci. The number of polymorphic loci detected per AFLP primer pair in a sample of 23 accessions ranged from 9 to 27. The AFLP phenotypic diversity values were greater in wild than in cultivated soybean. Cluster and principal component analyses using AFLP data clearly separated G. max and G. soja accessions. Within the G. max group, adapted soybean cultivars were tightly clustered, illustrating the relatively low genetic diversity present in cultivated soybean. AFLP analysis of four soybean near-isogenic lines (NILs) identified three AFLP markers putatively linked to a virus resistance gene from two sources. The capacity of AFLP analysis to detect thousands of independent genetic loci with minimal cost and time requirements makes them an ideal marker for a wide array of genetic investigations.  相似文献   

16.
In this study, the Glycine max Jackson cultivar (the relatively drought-sensitive) and the Glycine soja BB52 accession (the drought-tolerant one) were used as the experimental materials. Effects of seed soaking with exogenous soybean isoflavones (daidzin or genistin) on seed germination, and seedlings photosynthesis, relative electrolytic leakage, content of thiobarbituric acid reactive substances , and anti-oxidative activities were investigated under drought stress conditions. The results showed that, treatments of seed soaking with daidzin or genistin could improve seed germination, and alleviate cell damage, enhance anti-oxidative activities and photosynthesis in drought-stressed seedlings, therefore displayed mitigated effects on soybean drought injury, especially for the drought-sensitive G. max Jackson cultivar. Thus seed soaking with exogenous soybean isoflavones may be a usable approach to enhance drought tolerance of cultivated soybean in practice.  相似文献   

17.
Cultivated soybean (Glycine max) was derived from the wild soybean (Glycine soja), which has genetic resources that can be critically important for improving plant stress resistance. However, little information is available pertaining to the molecular and physiochemical comparison between the cultivated and wild soybeans in response to the pathogenic Fusarium oxysporum Schltdl. In this study, we first used comparative phenotypic and paraffin section analyses to indicate that wild soybean is indeed more resistant to F. oxysporum than cultivated soybean. Genome‐wide RNA‐sequencing approach was then used to elucidate the genetic mechanisms underlying the differential physiological and biochemical responses of the cultivated soybean, and its relative, to F. oxysporum. A greater number of genes related to cell wall synthesis and hormone metabolism were significantly altered in wild soybean than in cultivated soybean under F. oxysporum infection. Accordingly, a higher accumulation of lignins was observed in wild soybean than cultivated soybean under F. oxysporum infection. Collectively, these results indicated that secondary metabolites and plant hormones may play a vital role in differentiating the response between cultivated and wild soybeans against the pathogen. These important findings may provide future direction to breeding programs to improve resistance to F. oxysporum in the elite soybean cultivars by taking advantage of the genetic resources within wild soybean germplasm.  相似文献   

18.
Two wild legume plants,Glycine soja andCassia mimosoides var.nomame, and a cultivated plant, soybean (Glycine max), were employed for a study of triple symbiosis with an inoculum ofScutellispora heterogama harvested from natural soils and an inoculum of their own rhizobial cells. The dry weight, colonization of arbuscular mycorrhizal fungus, nodule formation and N2-fixation activity were estimated as the parameters of triple symbiosis. The two wild legume plants showed greater growth with colonization of arbuscular mycorrhizae than with nodulation, whereas the cultivated legume showed more nodulation than colonization of arbuscular mycorrhizae. Moreover,S. heterogama appeared to stimulate the triple symbiosis for the wild legume plants. The results suggested that spores ofS. heterogama are important in disturbed soils in Korea.  相似文献   

19.
5S ribosomal gene variation in the soybean and its progenitor   总被引:1,自引:0,他引:1  
Summary The soybean, Glycine max and its wild progenitor, Glycine soja, have been surveyed for repeat length variation for the nuclearly encoded 5S ribosomal RNA genes. There is little variation among the 33 accessions assayed, with a common repeat length of 345 bases being typical of both taxa. A 334 base size variant was encountered in individuals from two populations of G. soja from China. The low level of variability is in marked contrast to the variation observed within and between the species of the perennial subgenus Glycine.  相似文献   

20.

Background

Root system architecture is important for water acquisition and nutrient acquisition for all crops. In soybean breeding programs, wild soybean alleles have been used successfully to enhance yield and seed composition traits, but have never been investigated to improve root system architecture. Therefore, in this study, high-density single-feature polymorphic markers and simple sequence repeats were used to map quantitative trait loci (QTLs) governing root system architecture in an inter-specific soybean mapping population developed from a cross between Glycine max and Glycine soja.

Results

Wild and cultivated soybean both contributed alleles towards significant additive large effect QTLs on chromosome 6 and 7 for a longer total root length and root distribution, respectively. Epistatic effect QTLs were also identified for taproot length, average diameter, and root distribution. These root traits will influence the water and nutrient uptake in soybean. Two cell division-related genes (D type cyclin and auxin efflux carrier protein) with insertion/deletion variations might contribute to the shorter root phenotypes observed in G. soja compared with cultivated soybean. Based on the location of the QTLs and sequence information from a second G. soja accession, three genes (slow anion channel associated 1 like, Auxin responsive NEDD8-activating complex and peroxidase), each with a non-synonymous single nucleotide polymorphism mutation were identified, which may also contribute to changes in root architecture in the cultivated soybean. In addition, Apoptosis inhibitor 5-like on chromosome 7 and slow anion channel associated 1-like on chromosome 15 had epistatic interactions for taproot length QTLs in soybean.

Conclusion

Rare alleles from a G. soja accession are expected to enhance our understanding of the genetic components involved in root architecture traits, and could be combined to improve root system and drought adaptation in soybean.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1334-6) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号