首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
寇秀颖  张峰  吴诗  陈玲  张菊梅  吴清平 《微生物学报》2022,62(11):4305-4323
葡萄球菌是临床常见致病菌及食源性致病菌,可在食品原料加工、包装及运输过程中污染食品,引起人体多种严重感染,其耐药性的不断增强对公共卫生安全产生了重大的威胁。葡萄球菌中cfr (chloramphenicol-florfenicol resistance)基因编码的甲基转移酶,可引起细菌核糖体RNA的甲基化,从而阻碍或减弱多种化学结构不同的抗生素与肽基转移酶活性中心(peptidyl transferase center,PTC)的结合,导致葡萄球菌多重耐药表型的出现。噁唑烷酮类药物−利奈唑胺是继万古霉素后治疗耐药革兰氏阳性菌所致感染的最后一道防线,cfr基因的出现大大加速了利奈唑胺耐药性的传播。cfr基因广泛分布于多种致病性葡萄球菌中,cfr基因与各类型可转移元件(质粒、转座子和整合相关元件等)密切关联的遗传环境是其广泛传播的结构基础。在cfr基因水平传播的过程中,食源性致病葡萄球菌作为中间者扮演着重要的角色。本文就近年来国内外对致病性葡萄球菌中cfr基因的分布状况、耐药机制、遗传环境、传播机制等进行综述,以期为防控致病性葡萄球菌的传播提供参考,以遏制多重耐药菌的进一步传播。  相似文献   

2.
孙敬都  贾程皓  唐标  赵国屏  乐敏 《微生物学报》2023,63(11):4101-4117
抗生素被认为是现代医学的基石之一,但包括抗生素在内抗菌药物的滥用也加速了可抵抗多种抗菌药物“超级细菌”的出现。耐药基因是导致细菌产生耐药性的关键因素,可通过质粒、转座子(transposon, Tn)、插入序列(insertion sequence, IS)等可移动元件(mobile genetic elements, MGEs)进行水平转移,严重威胁公共卫生安全。近年来,面对碳青霉烯类药物和多黏菌素耐药性的暴发,替加环素被视为人类面临多重耐药细菌感染的最后一道防线。近期发现了一种主要存在于质粒上的新型可移动外排泵基因簇tmexCD-toprJ,可编码耐药结节细胞分化家族(resistance-nodulation-cell division, RND)外排泵,排出菌体内包括替加环素在内的多种抗生素,大幅提升了细菌的耐药性。tmexCD-toprJ基因簇可以随质粒等可移动元件进行水平转移,已经传播至人、动物和环境中,给公共卫生健康造成了严重威胁。然而,目前人们对于其具体结构和功能作用机制等研究仍不透彻。本文系统总结tmexCD-toprJ耐药基因的分布特征、传播机制及外排泵结构等研究现状,并基于同一健康(One Health)理念提出了阻遏其扩散的措施,为减缓tmexCD-toprJ传播提供科学依据。  相似文献   

3.
[目的]劳尔氏菌(Ralstonia solanacearum)在茄科作物上引起严重的细菌性青枯病,本研究旨在发掘青枯劳尔氏菌与致病相关的基因。[方法]利用Tn5转座子构建随机插入突变体,分析生物膜形成、细胞运动和致病性;对有表型变化的突变体,运用TAIL-PCR方法鉴定Tn5插入位点,确定所突变的基因。[结果]以模式菌株GMI000为出发菌,总共获得了400个突变体,其中2个突变体不能形成生物膜,在软琼脂平板上的运动能力下降;接种感病番茄植物,这2个突变体都不能引起萎焉症状。TAIL-PCR结果显示,2个突变体的Tn5插入位点都在NADH脱氢酶F亚基(nuoF)中,距离翻译起始位点分别为103-bp和225-bp。ripAY基因启动子推动的nuoF基因互补载体,完全恢复了2个突变体的表型。[结论]NADH脱氢酶复合物是微生物呼吸电子传递链中的第一步催化酶。我们的结果表明,NADH脱氢酶复合物对R.solanacearum生物膜形成、细胞运动和致病性也有重要作用。  相似文献   

4.
【背景】IncFII-FIA-FIB型质粒广泛存在于肠杆菌科细菌中,介导了许多耐药基因的水平转移,并导致细菌多重耐药问题日益严重。【目的】分析IncFII-FIA-FIB型多重耐药质粒pBTR-CTXM的基因组结构,并研究其介导大肠杆菌BTR株的耐药基因水平转移机制。【方法】利用PCR进行耐药基因筛查;接合转移和电转化实验验证质粒pBTR-CTXM是否具备自主接合转移的特性;VITEK 2 Compact全自动细菌鉴定及药敏分析仪测定相关菌株对抗生素的药物敏感性;构建MatePair文库并进行细菌全基因组高通量测序和质粒结构基因组学分析。【结果】菌株BTR是携带blaNDM-1、blaCTX-M-15、blaTEM、qnrD、qnrS1、mph(A)、erm(B)和tetA(B)等耐药基因的多重耐药大肠杆菌,其中blaCTX-M-15、mph(A)、erm(B)和tet A(B)等耐药基因均位于大小为144 939 bp的质粒p BTR-CTXM (GenBank登录号MF156697)上,该质粒可与菌株BTR内质粒pNDM-BTR接合共转移到受体菌大肠杆菌EC600中。pBTR-CTXM具备IncFII-FIA-FIB型质粒典型的骨架区结构,其多重耐药(Multidrug-resistant,MDR)区由新的复合型转座子Tn6492、Tn2残余、Tn10残余、ISEcp1-blaCTX-M-15-Δorf477转座单元和一些插入序列组成。【结论】pBTR-CTXM中新复合型转座子Tn6492与Tn10残余和ISEcp1-blaCTX-M-15-Δorf477转座单元共同介导大肠杆菌BTR株的多重耐药与耐药基因的水平传播。  相似文献   

5.
【目的】调查野生鸟类携带菌的耐药状况,探索其在细菌耐药性传播过程中的作用。【方法】从野生鸟类石鸡、绯胸鹦鹉、太阳锥尾鹦鹉和黑领椋鸟的新鲜粪便分离4株Klebsiella pneumoniae,采用微量肉汤稀释法评估其多重耐药表型,并利用全基因组测序技术和细菌全因组关联分析、比较基因组学方法对分离株进行分子溯源,系统解析其携带的多重耐药质粒或基因与其宿主、同源质粒间的关联。【结果】4株肺炎克雷伯菌的耐药谱各不相同,来自石鸡样本的分离株S90-2对9种药物耐受,绯胸鹦鹉样本分离株S141对3种药物耐受,太阳锥尾鹦鹉分离株M911-1仅耐受氨苄西林,黑领椋鸟的样本分离株S130-1对所使用的14种药物完全敏感。S90-2属于ST629型,携带blaCTX-M-14fosA6aac(3)-IidblaSHV-11为主的30个耐药基因和携带1个耐药性质粒pS90-2.3 (IncR型)。S141属于ST1662型,携带fosA5blaSHV-217等27个耐药基因,1个质粒pS141.1 [IncFIB(K)(pCAV1099-114)/repB型]仅携带耐药基因adeF。M911-1为新ST类型,携带blaSHV-1fosA6等共计27个耐药基因,其质粒pM911-1.1携带了3个耐药基因。S130-1属于ST3753型,携带blaSHV-11fosA6等27个耐药基因,pS130-1 [IncFIB(K)型]则仅携带一个耐药基因tet(A)。质粒比对表明,质粒pS90-2.3携带的耐药基因片段源自不同的肠杆菌科菌株染色体或质粒。pS90-2.3的同源质粒主要来自人类宿主菌,且主要在中国分布,这些质粒主要细菌宿主为K. pneumoniaeEscherichia coli,且ST11型K. pneumoniae分离株为重要宿主菌。【结论】本研究中来自野生鸟类的多重耐药K. pneumoniae,其耐药基因主要来自质粒,质粒耐药基因主要由转座子、插入序列、整合子和前噬菌体等可移动元件介导,这些多重耐药质粒与人类的宿主菌密切相关。  相似文献   

6.
【背景】细菌耐药性已成为全球健康卫生和经济发展的巨大威胁。替加环素是治疗多重耐药肠杆菌所致严重感染的主要药物之一,但在2019年发现了可介导其高水平耐药的可转移替加环素耐药基因tet(X3)。外膜囊泡作为介导水平基因转移的新型方式,在介导tet(X3)水平转移中的作用目前尚无报道。【目的】以tet(X3)阳性替加环素耐药鲍曼不动杆菌34AB为对象,探究不同抗菌药物对其外膜囊泡产量及主要生物学特性的影响。【方法】采用微量肉汤稀释法测定细菌药物敏感性,超速离心法提取细菌外膜囊泡,BCA法测定外膜囊泡产量,使用马尔文纳米粒度电位仪测定外膜囊泡的粒径与电位,PCR法(定性)及RT-qPCR法(定量)检测外膜囊泡中携带的tet(X3)基因。【结果】相较于无抗生素对照组[(0.64±0.04) mg/mL],在不同抗菌药物亚抑菌浓度(1/2 MIC和1/4 MIC)处理后,34AB外膜囊泡的产量均有所增加,以头孢他啶[1/2 MIC,(2.83±0.57) mg/mL;1/4 MIC,(2.38±0.29) mg/mL]和美罗培南[1/2 MIC,(2.19±0.11) mg/mL;1/4 MIC,(1.96±0.37) mg/mL]作用最为显著(p<0.01)。同时抗菌药物作用后,各组外膜囊泡粒径和电位均有所降低,而携带的tet(X3)基因拷贝数均有所上升(2.80×104-2.63×107copies/μL)。【结论】抗菌药物的临床应用可能会导致耐药细菌外膜囊泡产量及携带的耐药基因丰度增加,进而增强其作为水平基因转移载体传播耐药基因的风险。  相似文献   

7.
从棉花根际分离的铁载体产生菌E1,其16SrDNA与Pseudomonas mosselii ATCCBAA-99的同源性为100%。采用三亲本杂交方法将携带转座子Tn5-1063的质粒pRL1063a导入E1中进行转座子插入诱变。利用CAS法,从1000个突变株中,筛选到一株铁载体合成缺失突变株E1-185。利用TAIL-PCR方法,扩增位于Tn5-1063两端的侧翼序列。测序结果表明,转座子插入到E1的cysI基因内。该基因与Pseudomonas entomophila L48的cysI同源性为96%,其CysI氨基酸序列相似性为97%。该基因与半胱氨酸的合成密切相关,而在加有半胱氨酸的CAS平板上,突变株恢复了铁载体产生能力,证明cysI在E1铁载体合成过程中具有重要作用。据推测,cysI可能与铁载体合成途径中关键蛋白acyl-S-PCPs的形成有关。  相似文献   

8.
[目的] 研究克雷伯氏菌与多复制子抗性质粒间的关系,分析细菌携带多复制子质粒对抗生素环境的响应机制。[方法] 以2018-2020年分离的56株不同来源克雷伯氏菌(Klebsiella sp.)分离株为研究对象,利用微量肉汤稀释法评估其多重耐药表型,对分离菌株进行全基因组测序(WGS),通过细菌全基因组关联分析(BGWAS)技术和比较基因组学方法深入解析多复制子抗性质粒形成的机制。[结果] 耐药表型分析发现野生动物来源的菌株具有更广的耐药谱系,总体Klebsiella sp.对氨苄西林表现出很高的耐药率(80.36%),尤其是马来穿山甲来源菌株对头孢类抗生素高度耐受,同时对氯霉素、左氧氟沙星和复方新诺明等药物耐受,基因组分析发现这些菌株携带了抗性质粒和更多的抗生素抗性基因。进一步对69个质粒序列分析,发现有28个质粒为多复制子质粒,主要携带blaCTX-M-15blaCTX-M-14blaCTX-M-55blaOXA-1blaTEM-1等β-内酰胺酶基因。细菌携带质粒类型分析认为Klebsiella pneumoniae可能是多复制子质粒的重要宿主,质粒骨架与结构分析发现多复制子质粒多由2个或2个以上单个质粒融合而成,携带此类质粒的菌株不仅获得了更广的耐药表型,而且在全球传播扩散分布逐年增加,因此产生对抗生素环境更强的适应性。[结论] 多重耐药性细菌呈现的表型与携带的多复制子质粒有关,相比较下多复制子质粒比非多复制子质粒有更强的抗性基因携带能力,或许是细菌在强大的抗生素压力下产生的重要响应机制。本研究对于未来探索细菌抗性基因的传播扩散机制具有重要意义。  相似文献   

9.
【目的】旨在分析当前规模化养殖场副猪格拉菌(Glaesserella parasuis)优势血清型、耐药特性、耐药基因与分子特征。【方法】对源自规模化养猪场21株副猪格拉菌临床分离株,采用PCR鉴定血清型;利用K-B纸片扩散法鉴定其对25种抗生素的耐药表型;采用PCR检测bla-TEMbla-NDMbla-CTX等7种耐药基因,并采用Chi-square test和Fisher exact test分析耐药表型和耐药基因型的相关性;耐药基因目的条带测序,并应用CLC Sequence Viewer软件分析β-内酰胺类耐药基因(bla-TEM)编码蛋白氨基酸关键位点差异与耐药性的关系。【结果】21株副猪格拉菌临床分离株的优势血清型为4和12型;对β-内酰胺类药物苯唑西林的耐药性较强,耐药菌占比达61.9%(13/21);多重耐药菌株占比高达90.5%(19/21);β-内酰胺类耐药基因bla-TEM携带率较高(52.4%,11/21),且bla-TEMβ-内酰胺类药物青霉素G、苯唑西林和头孢拉定的耐药性显著相关,部分bla-TEM编码氨基酸存在可能与副猪格拉菌耐药能力有关的差异位点。【结论】本研究表明,规模化养猪场的副猪格拉菌多重耐药情况仍很严重,并明确了被调查区域β-内酰胺类药物耐药率高的主要原因是携带耐药基因bla-TEM,为加强对规模化养猪场副猪格拉菌耐药性监测提供理论依据。  相似文献   

10.
李碗芯  赵怡扬  林玲  林向民 《微生物学报》2021,61(11):3594-3606
[目的] LuxR家族转录因子能够抑制或刺激不同功能类型基因的表达,来维持细胞功能的稳定性。嗜水气单胞菌是水产养殖中重要的致病菌之一,目前对该菌中的LuxR家族转录因子功能的研究还较少。[方法] 本研究利用含有sacB标记的自杀载体pRE112和同源重组技术敲除LuxR家族转录因子AHA_1581基因。[结果] 生理表型测定结果发现,ΔAHA_1581的运动与胞外蛋白的酶活增强、生物被膜形成能力降低,且耐受低温、卡那霉素、庆大霉素胁迫,但是对K2Cr2O7更加敏感。进一步对野生型AhΔAHA_1581的定量蛋白质组学分析,共鉴定到2654个蛋白,其中59个蛋白下调表达,142个蛋白上调表达。生物信息学分析表明AHA_1581参与调控双组分调节系统、丙酮酸代谢、碳代谢、TCA循环等细菌重要生理过程,以及细菌耐药基因和毒力因子的差异表达。[结论] 了解AHA_1581基因在调控细菌毒力以及生物过程中所起的重要作用,对预防和控制嗜水气单胞菌引起疾病的发生和传播可能具有重要的科学意义。  相似文献   

11.
Cupriavidus metallidurans strain CH34 is a β-Proteobacterium that thrives in low concentrations of heavy metals. The genetic determinants of resistance to heavy metals are located on its two chromosomes, and are particularly abundant in the two megaplasmids, pMOL28 and pMOL30. We explored the involvement of mobile genetic elements in acquiring these and others traits that might be advantageous in this strain using genome comparison of Cupriavidus/Ralstonia strains and related β-Proteobacteria. At least eleven genomic islands were identified on the main replicon, three on pMOL28 and two on pMOL30. Multiple islands contained genes for heavy metal resistance or other genetic determinants putatively responding to harsh environmental conditions. However, cryptic elements also were noted. New mobile genetic elements (or variations of known ones) were identified through synteny analysis, allowing the detection of mobile genetic elements outside the bias of a selectable marker. Tn4371-like conjugative transposons involved in chemolithotrophy and degradation of aromatic compounds were identified in strain CH34, while similar elements involved in heavy metal resistance were found in Delftia acidovorans SPH-1 and Bordetella petrii DSM12804. We defined new transposons, viz., Tn6048 putatively involved in the response to heavy metals and Tn6050 carrying accessory genes not classically associated with transposons. Syntenic analysis also revealed new transposons carrying metal response genes in Burkholderia xenovorans LB400, and other bacteria. Finally, other putative mobile elements, which were previously unnoticed but apparently common in several bacteria, were also revealed. This was the case for triads of tyrosine-based site-specific recombinases and for an int gene paired with a putative repressor and associated with chromate resistance.  相似文献   

12.
Aims: To study streptomycin‐resistant bacteria isolated from Jiaozhou Bay and their molecular determinants of resistance. Methods and Results: Twenty‐seven tetracycline‐resistant and 49 chloramphenicol‐resistant bacterial isolates from surface seawater of Jiaozhou Bay were selected for investigation. More than 88% of these isolates were resistant to streptomycin. Half of the streptomycin‐resistant bacteria harboured the strA–strB gene pair, and six isolates carried Tn5393‐like transposons by PCR detection. The p9123‐related plasmids containing the sul2–strA–strB gene cluster were characterized in two environmental Escherichia coli isolates. Transposon Tn5393 was first identified on a Klebsiella pneumoniae plasmid, which also carried Tn1721, estP and umu genes responsible for antimicrobial and insecticide resistance. Conclusions: Coresistance to streptomycin and tetracycline or chloramphenicol was found with high frequency. p9123‐related plasmid and Tn5393 transposon may contribute to the wide distribution and spread of the strA–strB gene pair in Jiaozhou Bay. The detection of streptomycin‐resistance plasmid pQ1‐1 from Jiaozhou Bay seawater bacteria and human bacterial pathogens from USA indicates its global dissemination and transmission, across different components of the microbiota on earth. Significance and Impact of the Study: Streptomycin resistance can be recognized as an important bioindicator of environmental quality, owing to its association with anthropogenic pollution and the multidrug‐resistant microbiota.  相似文献   

13.
Horizontally acquired genetic information in bacterial chromosomes accumulates in blocks termed genomic islands. Tn7‐like transposons form genomic islands at a programmed insertion site in bacterial chromosomes, attTn7. Transposition involves five transposon‐encoded genes (tnsABCDE) including an atypical heteromeric transposase. One transposase subunit, TnsB, is from the large family of bacterial transposases, the second, TnsA, is related to endonucleases. A regulator protein, TnsC, functions with different target site selecting proteins to recognize different targets. TnsD directs transposition into attTn7, while TnsE encourages horizontal transmission by targeting mobile plasmids. Recent work suggests that distantly related elements with heteromeric transposases exist with alternate targeting pathways that also facilitate the formation of genomic islands. Tn6230 and related elements can be found at a single position in a gene of unknown function (yhiN) in various bacteria as well as in mobile plasmids. Another group we term Tn6022‐like elements form pathogenicity islands in the Acinetobacter baumannii comM gene. We find that Tn6022‐like elements also appear to have an uncharacterized mechanism for provoking internal transposition and deletion events that serve as a conduit for evolving new elements. As a group, heteromeric transposase elements utilize diverse target site selection mechanisms adapted to the spread and rearrangement of genomic islands.  相似文献   

14.
Tn163 is a transposable element identified in Rhizobium leguminosarum bv. viciae by its high insertion rate into positive selection vectors. The 4.6 kb element was found in only one further R. leguminosarum bv. viciae strain out of 70 strains investigated. Both unrelated R. leguminosarum bv. viciae strains contained one copy of the transposable element, which was localized in plasmids native to these strains. DNA sequence analysis revealed three large open reading frames (ORFs) and 38 bp terminal inverted repeats. ORF1 encodes a putative protein of 990 amino acids displaying strong homologies to transposases of class 11 transposons. ORF2, transcribed in the opposite direction, codes for a protein of 213 amino acids which is highly homologous to DNA invertases and resolvases of class II transposons. Homology of ORF1 and ORF2 and the genetic structure of the element indicate that Tn163 can be classified as a class II transposon. It is the first example of a native transposon in the genus Rhizobium. ORF3, which was found not to be involved in the transposition process, encodes a putative protein (256 amino acids) of unknown function. During transposition Tn163 produced direct repeats of 5 bp, which is typical for transposons of the Tn3 family. However, one out of the ten insertion sites sequenced showed a 6 by duplication of the target DNA; all duplicated sequences were A/T rich. Insertion of Tn163 into the sacB gene revealed two hot spots. Chromosomes of different R. leguminosarum bv. viciae strains were found to be highly refractory to the insertion of Tn163.  相似文献   

15.
Plasmids are important vehicles for the dissemination of antibiotic resistance genes (ARGs) among bacteria by conjugation. Here, we determined the complete nucleotide sequences of nine different plasmids previously obtained by exogenous plasmid isolation from river and creek sediments and wastewater from a pharmaceutical company. We identified six IncP/P-1ε plasmids and single members of IncL, IncN and IncFII-like plasmids. Genetic structures of the accessory regions of the IncP/P-1ε plasmids obtained implied that multiple insertions and deletions had occurred, mediated by different transposons and Class 1 integrons with various ARGs. Our study provides compelling evidence that Class 1 integrons, Tn402-like transposons, Tn3-like transposons and/or IS26 played important roles in the acquisition of ARGs across all investigated plasmids. Our plasmid sequencing data provide new insights into how these mobile genetic elements could mediate the acquisition and spread of ARGs in environmental bacteria.  相似文献   

16.
Summary Two derivatives of the prokaryotic transposon Tn5 were constructed in vitro. In Tn5-233, the central area of Tn5, which carries resistance to kanamycin/neomycin, bleomycin and streptomycin, is replaced by a fragment carrying resistance to the aminocyclitol antibiotics gentamycin/kanamycin and streptomycin/spectinomycin. In Tn5-235, the Escherichia coli -galactosidase gene is inserted within the streptomycin resistance gene of Tn5, and constitutively expressed from a Tn5 promoter. Both constructs transpose with about the same frequency as Tn5 in Escherichia coli and Rhizobium meliloti. When a Tn5-derivative is introduced into an R. meliloti strain which already contains a different Tn5-derivative, in situ transposon replacement is obtained at high frequency, presumably by a pair of crossovers between the IS50 sequences at the ends of the incoming and resident transposons. In this way we converted a previously isolated recA::Tn5 mutant into the corresponding recA::Tn5-233 strain, which can now be used as a genetic background in the study of complementation of other Tn5-induced mutations. We also replaced the drug markers of several Tn5-induced exo mutants, which we were then able to map relative to each other by transduction with phage M12. In a strain carrying Tn5-235 located near Tn5-233, we were able to isolate deletions of the intervening markers, presumably resulting from general recombination between the two transposons, by screening for loss of the Lac+ phenotype. Unlike Tn5 itself, resident Tn5-233 does not appear to suppress transposition of another incoming Tn5-derivative.Abbreviations bp base pairs - Nm neomycin - Km kanamycin - Sm streptomycin - Sp spectinomycin - Gm gentamycin - Tc tetracycline - Tp trimethoprim - Ot oxytetracycline - Rf rifampicin - Xgal 5-bromo-4-chloro-3-indolyl--d-galactoside  相似文献   

17.
Bacterial catabolic transposons   总被引:14,自引:0,他引:14  
The introduction of foreign organic hydrocarbons into the environment in recent years, as in the widespread use of antibiotics, has resulted in the evolution of novel adaptive mechanisms by bacteria for the biodegradation of the organic pollutants. Plasmids have been implicated in the catabolism of many of these complex xenobiotics. The catabolic genes are prone to undergo genetic rearrangement and this is due to their presence on transposons or their association with transposable elements. Most of the catabolic transposons have structural features of the class I (composite) elements. These include transposons for chlorobenzoate (Tn5271), chlorobenzene (Tn5280), the newly discovered benzene catabolic transposon (Tn5542), and transposons encoding halogenated alkanoates and nylon-oligomer-degradative genes. Transposons for the catabolism of toluene (Tn4651, Tn4653, Tn4656) and naphthalene (Tn4655) belong to class II (Tn3 family) elements. Many catabolic genes have been associated with insertion sequences, which suggests that these gene clusters could be rapidly disseminated among the bacterial populations. This greatly expands the substrate range of the microorganisms in the environment and aids the evolution of new and novel degradative pathways. This enhanced metabolic versatility can be exploited for and is believed to play a major part in the bioremediation of polluted environments. Received: 13 July 1998 / Received revision: 22 September 1998 / Accepted: 26 September 1998  相似文献   

18.
Plasmids remain important microbial components mediating the horizontal gene transfer (HGT) and dissemination of antimicrobial resistance. To systematically explore the relationship between mobile genetic elements (MGEs) and antimicrobial resistance genes (ARGs), a novel strategy using single-molecule real-time (SMRT) sequencing was developed. This approach was applied to pooled conjugative plasmids from clinically isolated multidrug-resistant (MDR) Klebsiella pneumoniae from a tertiary referral hospital over a 9-month period. The conjugative plasmid pool was obtained from transconjugants that acquired antimicrobial resistance after plasmid conjugation with 53 clinical isolates. The plasmid pool was then subjected to SMRT sequencing, and 82 assembled plasmid fragments were obtained. In total, 124 ARGs (responsible for resistance to β-lactam, fluoroquinolone, and aminoglycoside, among others) and 317 MGEs [including transposons (Tns), insertion sequences (ISs), and integrons] were derived from these fragments. Most of these ARGs were linked to MGEs, allowing for the establishment of a relationship network between MGEs and/or ARGs that can be used to describe the dissemination of resistance by mobile elements. Key elements involved in resistance transposition were identified, including IS26, Tn3, IS903B, ISEcp1, and ISKpn19. As the most predominant IS in the network, a typical IS26-mediated multicopy composite transposition event was illustrated by tracing its flanking 8-bp target site duplications (TSDs). The landscape of the pooled plasmid sequences highlights the diversity and complexity of the relationship between MGEs and ARGs, underpinning the clinical value of dominant HGT profiles.  相似文献   

19.
In the present study, 20 enterococci belonging to the species Enterococcus faecalis (12 strains), Enterococcus faecium (4), Enterococcus durans (2), Enterococcus hirae (1) and Enterococcus mundtii (1) and originating from a total production chain of swine meat commodities were analysed to investigate the diversity of their tetracycline resistance gene tet(M). PCR–RFLP and sequence analysis showed that the tet(M) gene of most strains can be correlated with the Tn916 transposon. Conversely, tet(M) of six E. faecalis and the E. hirae strain, all isolated from pig faecal samples, may be associated with previously undescribed members of the Tn916-1545 transposon family. In vitro filter conjugation trials showed the ability of 50% of the enterococcal strains, including E. mundtii, to transfer the tet(M) gene (and the associated Tn916 and new transposons) to E. faecalis or Listeria innocua recipient strains. tet(M) gene transfer to L. innocua recipient was also directly observed in meat food products. Collectively, these sequence and conjugation data indicate that various transposons can be responsible of the spread of tetracycline resistance in enterococci and validate the opinion that Enterococcus species are important sources of antibiotic resistance genes for potentially pathogenic bacteria occurring in the food chain. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Rapid spread of resistance to vancomycin has generated difficult to treat bacterial pathogens worldwide. Though vancomycin resistance is often conferred by the conjugative transposon Tn1549, it is yet unclear whether Tn1549 moves actively between bacteria. Here we demonstrate, through development of an in vivo assay system, that a mini‐Tn1549 can transpose in E. coli away from its natural Gram‐positive host. We find the transposon‐encoded INT enzyme and its catalytic tyrosine Y380 to be essential for transposition. A second Tn1549 protein, XIS is important for efficient and accurate transposition. We further show that DNA flanking the left transposon end is critical for excision, with changes to nucleotides 7 and 9 impairing movement. These mutations could be partially compensated for by changing the final nucleotide of the right transposon end, implying concerted excision of the two ends. With changes in these essential DNA sequences, or without XIS, a large amount of flanking DNA transposes with Tn1549. This rescues mobility and allows the transposon to capture and transfer flanking genomic DNA. We further identify the transposon integration target sites as TTTT‐N6‐AAAA. Overall, our results provide molecular insights into conjugative transposition and the adaptability of Tn1549 for efficient antibiotic resistance transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号