首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
庞晓斌  谢欣梅  李晓婷  赵艳 《生物磁学》2013,(34):6638-6641
目的:研究脉络宁注射液对SH—SY5Y细胞氧糖剥夺/再复氧糖(OGI)/R)损伤的保护作用,并探讨其可能的作用机制。方法:体外培养SH-SY5Y细胞,将细胞随机分为正常组、氧糖剥夺模型组和脉络宁组(1.0mL·L^-1),建立体外OGD/R细胞模型。倒置显微镜观察细胞形态;MTT法测定细胞存活率;测定乳酸脱氢酶(LDH)漏出量;Western Blot检测凋亡相关蛋白Bcl-2、Bax蛋白表达的变化。结果:与模型组相比,脉络宁能减轻OGD/R引起的SH-SY5Y细胞的损伤,明显提高细胞存活率(P〈0.05),减少LDH的释放量(P〈0.05),有效抑制Bax蛋白的表达(P〈0.05),上调Bcl-2的表达(P〈0.05)。结论:脉络宁注射液对OGD/R引起的SH-sY5Y细胞损伤有保护作用,其机制可能与影响凋亡相关基因Bcl-2、Bax的表达有关。  相似文献   

4.
5.
Ataxia telangiectasia (A-T) is an autosomal, recessive disorder mainly characterized by neuronal degeneration. However, the reason for neuronal degeneration in A-T patients is still unclear. ATM (A-T, mutated), the gene mutated in A-T, encodes a 370-kDa protein kinase. We measured the levels of the ATM protein found in differentiated neuron-like rat PC12 cells and differentiated neuron-like human SH-SY5Y cells. We found that, in rat PC12 cells, ATM levels decreased dramatically after differentiation, which is consistent with previous results observed in differentiated mouse neural progenitor cells. In contrast, the levels of ATM were similar before and after differentiation in human SH-SY5Y cells. Using an indirect immunofluorescence assay, we showed that ATM translocates from the nucleus to the cytoplasm in differentiated human SH-SY5Y cells. The translocation of ATM was further verified by subcellular fractionation experiments. The constitutive expression and cytoplasmic translocation of ATM in differentiated SH-SY5Y cells suggest that ATM is important for maintaining the regular function of human neuronal cells. Our results further demonstrated that, in response to insulin, ATM protects differentiated neuron-like SH-SY5Y cells from serum starvation-induced apoptosis. These data provide the first evidence that cytoplasmic ATM promotes survival of human neuronal cells in an insulin-dependent manner.  相似文献   

6.
Staurosporine is one of the best apoptotic inducers in different cell types including neuroblastomas. In this study we have compared the efficiency and final outcome of three different anti-apoptotic strategies in staurosporine-treated SH-SY5Y human neuroblastoma cells. At staurosporine concentrations up to 500 nm, z-VAD.fmk a broad-spectrum, noncompetitive inhibitor of caspases, reduced apoptosis in SH-SY5Y cells. At higher concentrations, z-VAD.fmk continued to inhibit caspases and the apoptotic phenotype but not cell death which seems to result from oxidative damage. Stable over-expression of Bcl-2 in SH-SY5Y protected cells from death at doses of staurosporine up to 1 microm. At higher doses, cytochrome c release from mitochondria occurred, caspases were activated and cells died by apoptosis. Therefore, we conclude that Bcl-2 increased the threshold for apoptotic cell death commitment. Over-expression of Bcl-X(L) was far more effective than Bcl-2. Bcl-X(L) transfected cells showed a remarkable resistance staurosporine-induced cytochrome c release and associated apoptotic changes and survived for up to 15 days in 1 microm staurosporine. In these conditions, SH-SY5Y displayed a remarkable phenotype of neuronal differentiation as assessed by neurite outgrowth and expression of neurofilament, Tau and MAP-2 neuronal specific proteins.  相似文献   

7.
Protein kinase C (PKC) activation induces neuronal differentiation of SH-SY5Y neuroblastoma cells. This study examines the role of PKCbeta isoforms in this process. The PKCbeta-specific inhibitor LY379196 had no effect on 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced neurite outgrowth from SH-SY5Y neuroblastoma cells. On the other hand, PKCbeta inhibition suppressed the TPA-stimulated increase in neuropeptide Y mRNA, activation of neuropeptide Y gene promoter elements, and phosphorylation of Erk1/2. The TPA-induced increase in neuropeptide Y expression was also inhibited by the MEK inhibitor PD98059. These data indicate that activation of a PKCbeta isoform, through a pathway involving Erk1/2, leads to increased expression of neuronal differentiation genes in neuroblastoma cells.  相似文献   

8.
9.
Despite their sympathetic neuroblast origin, highly malignant neuroblastoma tumors and derived cell lines have no or low expression of the neurotrophin receptor genes, trkA and trkC. Expression of exogenous trkA in neuroblastoma cells restores their ability to differentiate in response to nerve growth factor (NGF). Here we show that stable expression of trkC in SH-SY5Y neuroblastoma cells resulted in morphological and biochemical differentiation upon treatment with neurotrophin-3 (NT-3). To some extent, trkA- and trkC-transfected SH-SY5Y (SH-SY5Y/trkA and SH-SY5Y/trkC) cells resembled one another in terms of early signaling events and neuronal marker gene expression, but important differences were observed. Although induced Erk 1/2 and Akt/PKB phosphorylation was stronger in NT-3-stimulated SH-Y5Y/trkC cells, activation of the immediate-early genes tested was more prominent in NGF-treated SH-SY5Y/ trkA cells. In particular, c-fos was not induced in the SH-SY5Y/trkC cells. There were also phenotypic differences. The concentrations of norepinephrine, the major sympathetic neurotransmitter, and growth cone-located synaptophysin, a neurosecretory granule protein, were increased in NGF-treated SH-SY5Y/trkA but not in NT-3-treated SH-SY5Y/trkC cells. Our data suggest that NT-3/p145trkC and NGF/p140trkA signaling differ in some aspects in neuroblasoma cells, and that this may explain the phenotypic differences seen in the long-term neurotrophin-treated cells.  相似文献   

10.
Paraquat is a widely used herbicide that is structurally similar to the known dopaminergic neurotoxicant 1-methyl-4-phenyl-pyridine and acts as a potential etiologic factor for the development of Parkinson's disease. In this study, we investigated the protective roles of lipocalin-type prostaglandin (PG) D synthase (L-PGDS) against paraquat-mediated apoptosis of human neuronal SH-SY5Y cells. The treatment of SH-SY5Y cells with paraquat decreased the intracellular GSH level, and enhanced the cell death with elevation of the caspase activities. L-PGDS was expressed in SH-SY5Y cells, and its expression was enhanced with the peak at 2?h after the initiation of the treatment with paraquat. Inhibition of PGD? synthesis and exogenously added PGs showed no effects regarding the paraquat-mediated apoptosis. SiRNA-mediated suppression of L-PGDS expression in the paraquat-treated cells increased the cell death and caspase activities. Moreover, over-expression of L-PGDS suppressed the cell death and caspase activities in the paraquat-treated cells. The results of a promoter-luciferase assay demonstrated that paraquat-mediated elevation of L-PGDS gene expression occurred through the NF-κB element in the proximal promoter region of the L-PGDS gene in SH-SY5Y cells. These results indicate that L-PGDS protected against the apoptosis in the paraquat-treated SH-SY5Y cells through the up-regulation of L-PGDS expression via the NF-κB element. Thus, L-PGDS might potentially serve as an agent for prevention of human neurodegenerative diseases caused by oxidative stress and apoptosis.  相似文献   

11.
Human neuroblastoma SH-SY5Y cells differentiate terminally in culture upon exposure to nerve growth factor (NGF) for 4-5 weeks. The neuronal phenotypic properties acquired in response to prolonged NGF treatment include morphological differentiation, cessation of mitotic activity, neuronal marker expression, increased membrane electrical potentials, and a survival dependence upon NGF for trophic support (Jensen, L.M. (1987) Dev. Biol. 120, 56-64). Thus, differentiated cultures survive indefinitely in the continued presence of NGF, however, withdrawal of NGF from differentiated cultures effects the loss of cellular viability within 3-6 days. Here, we show that death of differentiated SH-SY5Y cells caused by NGF deprivation is characteristic of apoptosis. To compare the differentiation promoting and the neurotrophic properties of NGF, whole SH-SY5Y cell extracts were analyzed by two-dimensional polyacrylamide gel electrophoresis using isoelectric focusing and nonequilibrium pH gradient electrophoresis gels in the first dimension. Steady-state levels of polypeptides extracted from whole-cell lysates of naive (untreated) cells, terminally differentiated cells, and NGF-deprived differentiated cells were compared. Over 1,000 spots from each were analyzed using computer-aided spot matching and densitometry. We noted 25 polypeptides that decreased during differentiation, including 15 that decreased by a factor of 10 or more. The levels of five polypeptides were induced from very low or undetectable levels in naive cells. Withdrawal of NGF from terminally differentiated cells produced alterations in steady-state protein patterns substantially distinct from those occurring during differentiation. While levels of most proteins do not appear affected early after NGF withdrawal, others rapidly return to levels comparable with those of the naive state and some changes occurring with differentiation are enhanced further upon NGF withdrawal. Three polypeptides were regulated uniquely by NGF withdrawal, including two that were induced, on average, 20- and 28-fold and another that was depressed more than 7-fold after NGF deprivation, before cell death. These data indicate that NGF elicits both constitutive and nonconstitutive changes in gene expression and suggest that the differentiation promoting and the neurotrophic properties of NGF correlate with the regulation of different gene products.  相似文献   

12.
Liu YY  Zhao HY  Zhao CL  Duan CL  Lu LL  Yang H 《生理学报》2006,58(5):421-428
帕金森病(Parkinson’s disease,PD)的发病机制涉及到遗传和环境因素。环境因素通过线粒休导致氧化应激和α-突触核蛋白(α—synuclein)聚集,但其确切的作用机制尚不明确。本文利用过表达α-突触核蛋白-增强型绿色荧光蛋白(enhanced green fluorescent protein.EGFP)的人多巴胺能神经母细胞瘤细胞株SH—SY5Y为模型,研究α-突触核蛋白对鱼藤酮诱导氧化应激的影响,从而进一步了解α-突触核蛋白和细胞存活之间的关系。(1)用荧光显微镜观察融合绿色荧光蛋白的α-突触核蛋白的表达情况;(2)用实时定量PCR检测α-突触核蛋白基因的表达;(3)用免疫细胞化学测定α-突触核蛋白的分布;(4)用不同浓度的鱼藤酮作用细胞后,以MTT法测细胞的活力、DCF法检测细胞的氧化应激状态、黄嘌呤氧化酶法检测超氧化物歧化酶的活力,并用流式细胞仪分析细胞的凋亡。实时定量PCR结果显示,α-突触核蛋白基因表达量在α-突触核蛋白过表达的细胞要高于SH—SY5Y细胞,在荧光显微镜下可见绿色荧光蛋白和α-突触核蛋白的表达。鱼藤酮可使细胞活力下降、线粒体complex Ⅰ的活性降低,诱导细胞内氧化应激,而过表达α-突触核蛋白的细胞可以部分抵抗鱼藤酮的毒性作用,表现为细胞抗氧化能力迅速增高(P〈0.05)和鱼藤酮诱导的细胞凋亡数目明显降低。本研究证明α-突触核蛋白对鱼藤酮产生的氧化应激有部分抵抗作用,而使过表达α-突触核蛋白的SH—SY5Y细胞对鱼藤酮的毒性作用表现出一定的耐受性。这种耐受性也可能是细胞对外界损害的一种代偿反应,从而促进细胞的存活。  相似文献   

13.
This study was designed to investigate the protective effects of extracellular superoxide dismutase (SOD3) against amyloid beta (Aβ25–35)-induced damage in human neuroblastoma SH-SY5Y cells and to elucidate the mechanisms responsible for this beneficial effect. SH-SY5Y cells overexpressing SOD3 were generated by adenoviral vector-mediated infection and Aβ25–35 was then added to the cell culture system to establish an in vitro model of oxidative stress. Cell viability, the generation of intracellular reactive oxygen species (ROS), the expression and activity of antioxidant enzymes, the levels of lipid peroxidation malondialdehyde (MDA), the expression of mitochondrial apoptosis-related genes and calcium images were examined. Following Aβ25–35 exposure, SOD3 overexpression promoted the survival of SH-SY5Y cells, decreased the production of ROS, decreased MDA and calcium levels, and decreased cytochrome c, caspase-3, caspase-9 and Bax gene expression. Furthermore, SOD3 overexpression increased the expression and activity of antioxidant enzyme genes and Bcl-2 expression. Together, our data demonstrate that SOD3 ameliorates Aβ25–35-induced oxidative damage in neuroblastoma SH-SY5Y cells by inhibiting the mitochondrial pathway. These data provide new insights into the functional actions of SOD3 on oxidative stress-induced cell damage.  相似文献   

14.
15.
目的:构建Beclin-1基因短发夹干扰RNA(shRNA)慢病毒载体,感染人SH-SY5Y细胞,观察沉默Beclin-1基因后低氧对SH-SY5Y细胞自噬的影响。方法:构建特异性靶向Beclin-1基因的shRNA慢病毒表达载体和阴性对照序列慢病毒载体;再将载体转染入SH-SY5Y细胞;RT-PCR检测Beclin-1的mRNA表达;Western blot检测Beclin-1蛋白表达;CCK-8法测定Beclin-1 shRNA对SH-SY5Y细胞活力的影响。再将空白对照、阴性对照、转染型三种细胞分别以21%常氧及5%低氧培养,Western blot检测各组细胞LC3蛋白表达;电镜观察自噬小体。结果:Beclin-1 shRNA能明显抑制SH-SY5Y细胞Beclin-1的mRNA及蛋白的表达;沉默Beclin-1基因后,Beclin-1 shRNA组细胞存活率与阴性对照组相比无差异;成功建立了稳定表达Beclin-1 shRNA的SH-SY5Y细胞。5%低氧处理后,与阴性对照组相比较,Beclin-1 shRNA组细胞中LC3Ⅱ/LC3Ⅰ比值下调,细胞内自噬小体数量减少。结论:慢病毒介导的Beclin-1shRNA对SH-SY5Y细胞的活力无影响,但可以抑制低氧诱导的自噬。  相似文献   

16.
17.
Activin is a member of the transforming growth factor-beta superfamily which comprises a growing list of multifunctional proteins that function as modulators of cell proliferation, differentiation, hormone secretion and neuronal survival. This study examined the neuroprotective effect of both Activin A and B in serum withdrawal and oxidative stress apoptotic cellular models and investigated the expression of pro- and anti-apoptotic proteins, which may account for the mechanism of Activin-induced neuroprotection. Here, we report that recombinant Activin A and B are neuroprotective against serum deprivation- and toxin- [either the parkinsonism-inducing neurotoxin, 6-hydroxydopamine (6-OHDA) or the peroxynitrite donor, 3-(4-morpholinyl) sydnonimine hydrochloride (SIN-1)] induced neuronal death in human SH-SY5Y neuroblastoma cells. Furthermore, we demonstrate for the first time that transient transfection with Activin betaA or betaB significantly protect SH-SY5Y and rat pheochromocytoma PC12 cells against serum withdrawal-induced apoptosis. This survival effect is mediated by the Bcl-2 family members and involves inhibition of caspase-3 activation; reduction of cleaved poly-ADP ribose polymerase and phosphorylated H2A.X protein levels and elevation of tyrosine hydroxylase expression. These results indicate that both Activin-A and -B share the potential to induce neuroprotective activity and thus may have positive impact on aging and neurodegenerative diseases to retard the accelerated rate of neuronal degeneration.  相似文献   

18.
MicroRNAs (miRNAs) are generated by endonuclease activity of Dicer, which also helps in loading of miRNAs to their target sequences. SH-SY5Y, a human neuroblastoma and a cellular model of neurodevelopment, consistently expresses genes related to neurodegenerative disorders at different biological levels (DNA, RNA, and proteins). Using SH-SY5Y cells, we have studied the role of Dicer and miRNAs in neuronal differentiation and explored involvement of P53, a master regulator of gene expression in differentiation-induced induction of miRNAs. Knocking down Dicer gene induced senescence in differentiating SH-SY5Y cells, which indicate the essential role of Dicer in brain development. Differentiation of SH-SY5Y cells by retinoic acid (RA) or RA + brain-derived neurotrophic factor (BDNF) induced dramatic changes in global miRNA expression. Fully differentiated SH-SY5Y cells (5-day RA followed by 3-day BDNF) significantly (p < 0.05 and atleast >3-fold change) upregulated and downregulated the expression of 77 and 17 miRNAs, respectively. Maximum increase was observed in the expression of miR-193-5p, miR-199a-5p, miR-192, miR-145, miR-28-5p, miR-29b, and miR-222 after RA exposure and miR-193-5p, miR-146a, miR-21, miR-199a-5p, miR-153, miR-29b, and miR-222 after RA + BDNF exposure in SH-SY5Y cells. Exploring the role of P53 in differentiating SH-SY5Y cells, we have observed that induction of miR-222, miR-192, and miR-145 is P53 dependent and expression of miR-193a-5p, miR-199a-5p, miR-146a, miR-21, miR-153, and miR-29b is P53 independent. In conclusion, decreased Dicer level enforces differentiating cells to senescence, and differentiating SH-SY5Y cells needs increased expression of P53 to cope up with changes in protein levels of mature neurons.  相似文献   

19.
Cyclin-dependent kinase-5 (Cdk5) is required for neuronal survival, but its targets in the apoptotic pathways remain unknown. Here, we show that Cdk5 kinase activity prevents neuronal apoptosis through the upregulation of Bcl-2. Treatment of SH-SY5Y cells with retinoid acid (RA) and brain-derived neurotrophic factor (BDNF) generates differentiated neuron-like cells. DNA damage triggers apoptosis in the undifferentiated cells through mitochondrial pathway; however, RA/BDNF treatment results in Bcl-2 upregulation and inhibition of the mitochondrial pathway in the differentiated cells. RA/BDNF treatment activates Cdk5-mediated PI3K/Akt and ERK pathways. Inhibition of Cdk5 inhibits PI3K/Akt and ERK phosphorylation and Bcl-2 expression, and thus sensitizes the differentiated cells to DNA-damage. Inhibition of ERK, but not PI3K/Akt, abrogates Cdk5-medidated Bcl-2 upregulation and the protection of the differentiated cells. This study suggests that ERK-mediated Bcl-2 upregulation contributes to BDNF-induced Cdk5-mediated neuronal survival.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号