首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
GATA6 regulates differentiation of distal lung epithelium   总被引:8,自引:0,他引:8  
  相似文献   

3.
Transgenic mice expressing platelet-derived growth factor A chain (PDGF-A) in the distal lung epithelium from the surfactant protein C (SPC) promoter were generated to investigate the role of this growth factor in lung development. Expression of the SPC-PDGFA transgene resulted in an enlarged, nonfunctional lung and perinatal lethality caused by failure to initiate ventilation. Histologic analysis of embryonic day (E) 16.5 lungs revealed increased mesenchymal cells and acinar buds and decreased bronchioles and dilated airspaces in SPC-PDGFA transgenic mice. At E18.5, nontransgenic lungs exhibited lung morphology typical of the saccular stage of lung development, including dilated airspaces, thin respiratory epithelium and mesenchyme, and elastin fiber deposition in primary septa. In contrast, E18.5 transgenic lungs retained many features of the canalicular stage of lung development, including undilated airspaces, cuboidal respiratory epithelium, thickened mesenchyme, and lack of parenchymal elastin deposition. These results indicate that PDGF-A is a potent growth factor for mesenchymal cells in the developing lung and that the downregulation of PDGF-A expression that normally occurs in the lung during late gestation is required for transition from the canalicular to the saccular stage of lung development.  相似文献   

4.
cAMP signaling is postulated to play a role in distal lung epithelial differentiation based on several observations. First, it enhances fibroblast growth factor-induced transdifferentiation of early tracheal epithelium into respiratory epithelium. Second, there are cAMP-responsive elements in the heterologous promoters of Sftpb and Sftpa genes. Third, cAMP augments the effect of dexamethasone in maintaining differentiation of human fetal type II pneumocyte culture. However, this concept has not been thoroughly tested in vivo. In the current study, we modulated cAMP signaling in developing distal lung epithelium in vivo using an inducible transgenic system that expressed a mutant form of Galpha(s) (Galpha(s)Q227L). We failed to demonstrate the ability of cAMP to promote distal epithelial maturation during embryonic stages. The results argue against its physiological role in this process. In addition, induction of cAMP signaling at the late pseudoglandular stage but not during the canalicular or saccular stage surprisingly delayed distal differentiation by suppressing the expression of Sftpc, Sftpa, and Aquaporin5 as well as the formation of lamellar bodies. This stage-specific inhibitory effect was observed in the absence of cellular toxicity or changes in branching. Transgenic lungs did not show significant changes in the known pathways that are important for distal differentiation. Therefore, we propose the existence of yet-to-be identified cAMP-sensitive novel regulators of early distal lung epithelial differentiation. Although the delay of differentiation seemed to be reversible at later stages, it still led to pronounced permanent postnatal airspace enlargement due to impaired paracrine function of distal epithelium in regulating alveolar myofibroblast development.  相似文献   

5.
6.
7.
8.
9.
10.
Bone morphogenetic protein-4 (BMP-4) is a key morphogen for embryonic lung development that is expressed at high levels in the peripheral epithelium, but the mechanisms that modulate BMP-4 function in early mouse lung branching morphogenesis are unclear. Here, we studied the BMP-4 antagonist Gremlin, which is a member of the DAN family of BMP antagonists that can bind and block BMP-2/4 activity. The expression level of gremlin in embryonic mouse lungs is highest in the early embryonic pseudoglandular stage [embryonic days (E) 11.5-14.5] and is reduced during fetal lung maturation (E18.5 to postnatal day 1). In situ hybridization indicates that gremlin is diffusely expressed in peripheral lung mesenchyme and epithelium, but relatively high epithelial expression occurs in branching buds at E11.5 and in large airways after E16.5. In E11.5 lung organ culture, we found that exogenous BMP-4 dramatically enhanced peripheral lung epithelial branching morphogenesis, whereas reduction of endogenous gremlin expression with antisense oligonucleotides achieved the same gain-of-function phenotype as exogenous BMP-4, including increased epithelial cell proliferation and surfactant protein C expression. On the other hand, adenoviral overexpression of gremlin blocked the stimulatory effects of exogenous BMP-4. Therefore, our data support the hypothesis that Gremlin is a physiologically negative regulator of BMP-4 in lung branching morphogenesis.  相似文献   

11.
12.
Although thyroid hormone (T(3)) influences epithelial cell differentiation during late fetal lung development, its effects on early lung morphogenesis are unknown. We hypothesized that T(3) would alter embryonic lung airway branching and temporal-spatial differentiation of the lung epithelium and mesenchyme. Gestational day 11.5 embryonic mouse lungs were cultured for 72 h in BGJb serum-free medium without or with added T(3) (0.2, 2.0, 10.0, or 100 nM). Evaluation of terminal bud counts showed a dose- and time-dependent decrease in branching morphogenesis. Cell proliferation was also significantly decreased with higher doses of T(3). Morphometric analysis of lung histology showed that T(3) caused a dose-dependent decrease in mesenchyme and increase in cuboidal epithelia and airway space. Immunocytochemistry showed that with T(3) treatment, Nkx2.1 and surfactant protein SP-C proteins became progressively localized to cuboidal epithelial cells and mesenchymal expression of Hoxb5 was reduced, a pattern resembling late fetal lung development. We conclude that exogenous T(3) treatment during early lung development accelerated epithelial and mesenchymal cell differentiation at the expense of premature reduction in new branch formation and lung growth.  相似文献   

13.
K Peters  S Werner  X Liao  S Wert  J Whitsett    L Williams 《The EMBO journal》1994,13(14):3296-3301
Mouse lung development begins when two lung buds sprout from the epithelium of the embryonic gut. Patterning of the airways is then accomplished by the outgrowth and repetitive branching of the two lung buds, a process called branching morphogenesis. One of the four fibroblast growth factor (FGF) receptor genes, FGFR2, is expressed in the epithelium of a number of embryonic organs including the lung buds. To block the function of FGFR2 during branching morphogenesis of the lung without affecting its function in other embryonic tissues, the human surfactant protein C promoter was used to target expression of a dominant negative FGFR2 exclusively to lung bud epithelium in transgenic mice. Newborn mice expressing the transgene were completely normal except that instead of normally developed lungs they had two undifferentiated epithelial tubes that extended from the bifurcation of the trachea down to the diaphragm, a defect that resulted in perinatal death. Thus, the dominant negative FGF receptor completely blocked airway branching and epithelial differentiation, without prohibiting outgrowth, establishing a specific role for FGFs in branching morphogenesis of the mammalian lung.  相似文献   

14.
The role of WNT signaling and its interactions with other morphogenetic pathways were investigated during lung development. Previously, we showed that targeted disruption of Wnt5a results in over-branching of the epithelium and thickening of the interstitium in embryonic lungs. In this study, we generated and characterized transgenic mice with lung-specific over-expression of Wnt5a from the SpC promoter. Over-expression of Wnt5a interfered with normal epithelial-mesenchymal interactions resulting in reduced epithelial branching and dilated distal airways. During early lung development, over-expression of Wnt5a in the epithelium resulted in increased Fgf10 in the mesenchyme and decreased Shh in the epithelium. Both levels and distribution of SHH receptor, Ptc were reduced in SpC-Wnt5a transgenic lungs and were reciprocally correlated to changes of Fgf10 in the mesenchyme, suggesting that SHH signaling is decreased by over-expression of Wnt5a. Cultured mesenchyme-free epithelial explants from SpC-Wnt5a transgenic lungs responded abnormally to recombinant FGF10 supplied uniformly in the Matrigel with dilated branch tips that mimic the in vivo phenotype. In contrast, chemotaxis of transgenic epithelial explants towards a directional FGF10 source was inhibited. These suggest that over-expression of Wnt5a disrupts epithelial-response to FGF10. In conclusion, Wnt5a regulates SHH and FGF10 signaling during lung development.  相似文献   

15.
Mammalian lung develops as an evagination of ventral gut endoderm into the underlying mesenchyme. Iterative epithelial branching, regulated by the surrounding mesenchyme, generates an elaborate network of airways from the initial lung bud. Fibroblast growth factors (FGFs) often mediate epithelial-mesenchymal interactions and mesenchymal Fgf10 is essential for epithelial branching in the developing lung. However, no FGF has been shown to regulate lung mesenchyme. In embryonic lung, Fgf9 is detected in airway epithelium and visceral pleura at E10.5, but is restricted to the pleura by E12.5. We report that mice homozygous for a targeted disruption of Fgf9 exhibit lung hypoplasia and early postnatal death. Fgf9(-/-) lungs exhibit reduced mesenchyme and decreased branching of airways, but show significant distal airspace formation and pneumocyte differentiation. Our results suggest that Fgf9 affects lung size by stimulating mesenchymal proliferation. The reduction in the amount of mesenchyme in Fgf9(-/-) lungs limits expression of mesenchymal Fgf10. We suggest a model whereby FGF9 signaling from the epithelium and reciprocal FGF10 signaling from the mesenchyme coordinately regulate epithelial airway branching and organ size during lung embryogenesis.  相似文献   

16.
Classical tissue recombination experiments have reported that at early gestation both tracheal and distal lung epithelium have the plasticity to respond to mesenchymal signals. Herein we examined the role of epithelial-mesenchymal interactions in maintaining epithelial differentiation at late (E19-E21, term = 22 days) fetal gestation in the rat. Isolated distal lung epithelial cells were recombined with mesenchymal cells from lung, skin, and intestine, and the homotypic or heterotypic recombinant cell aggregates were cultured for up to 5 days. Recombining lung epithelial cells with mesenchyme from various sources induced a morphological pattern that was specific to the type of inducing mesenchyme. In situ analysis of surfactant protein (SP)-C, SP-B, and Clara cell secretory protein (CCSP) expression, as well as SP-C and CCSP promoter transactivation experiments, revealed that distal lung epithelium requires lung mesenchyme to maintain the alveolar, but not bronchiolar, phenotype. Incubation of lung recombinants with an anti-FGF7 antibody resulted in a partial inhibition of mesenchyme-induced SP-C promoter transactivation. Immunoreactivity for Delta and Lunatic fringe, components of the Notch pathway that regulates cell differentiation, was downregulated in the heterotypic recombinants. In contrast, Hes1 mRNA expression was increased in these recombinants. Cumulatively, these results suggest that at late fetal gestation, distal lung epithelial cells are not fully committed to a specific phenotype and still have the plasticity to respond to various signals. Their alveolar phenotype is likely maintained by Notch/Notch ligand interactions and mesenchymal factors, including FGF7.  相似文献   

17.
Vascular endothelial growth factor (VEGF) is a potent endothelial cell mitogen involved in normal and abnormal angiogenesis. VEGF mRNA and protein are abundant in distal epithelium of midtrimester human fetal lung. In the present study, we identified immunoreactivity for KDR, a major VEGF-specific receptor, in distal lung epithelial cells of human fetal lung tissue, suggesting a possible autocrine or paracrine regulatory role for VEGF in pulmonary epithelial cell growth and differentiation. Addition of exogenous VEGF to human fetal lung explants resulted in increased epithelium volume density and lumen volume density in the tissues, both morphometric parameters of tissue differentiation. Cellular proliferation demonstrated by bromodeoxyuridine uptake was prominent in distal airway epithelial cells and increased in the VEGF-treated explants. VEGF-treated explants also demonstrated increased surfactant protein (SP) A mRNA, SP-C mRNA, and SP-A protein levels compared with controls. However, SP-B mRNA levels were unaffected by VEGF treatment. [(3)H]choline incorporation into total phosphatidylcholine was increased by VEGF treatment, but incorporation into disaturated phosphatidylcholine was not affected by exogenous VEGF. Based on these observations, we conclude that VEGF may be an important autocrine growth factor for distal airway epithelial cells in the developing human lung.  相似文献   

18.
The distal epithelium of the developing lung exhibits high-level expression of protein phosphatase 2A (PP2A), a vital signaling enzyme. Here we report the discovery that in the lung, the PP2A regulatory subunit B56gamma is expressed in a discrete developmental period, with the highest protein levels at embryonic day (e) 17, but no detectable protein in the newborn or adult. By in situ hybridization, B56gamma was highly expressed in the distal epithelium of newly forming airways and in mesenchymal cells. In contrast, expression of B56gamma was quite low in the bronchial epithelium and vascular smooth muscle. Transgenic expression of B56gamma using the lung-specific promoter for surfactant protein C (SP-C) resulted in neonatal death. Examination of lungs from SP-C-B56gamma transgenic e18 fetuses revealed proximal airways and normal blood vessels, but the tissue was densely populated with epithelial-type cells and was devoid of normal peripheral lung structure. A component of the Wnt signaling pathway, beta-catenin, was developmentally regulated in the normal lung and was absent in lung tissue from B-56gamma transgenic fetuses. We propose that B56gamma is expressed at a particular stage of lung development to modulate PP2A action on the Wnt/beta-catenin signaling pathway during lung airway morphogenesis.  相似文献   

19.
Lung morphogenesis requires precise coordination between branching morphogenesis and vascularization to generate distal airways capable of supporting respiration at the cell-cell interface. The specific origins and types of blood vessels that initially form in the lung, however, remain obscure. Herein, we definitively show that during the early phases of lung development [i.e., embryonic day (E) 11.5], functional vessels, replete with blood flow, are restricted to the mesenchyme, distal to the epithelium. However, by day E14.5, and in response to epithelial-derived VEGF signals, functional vessels extend from the mesenchyme to the epithelial interface. Moreover, these vessels reside adjacent to multipotent mesenchymal stromal cells that likely play a regulatory role in this process. As well as and distinct from the systemic vasculature, immunostaining for EphrinB2 and EphB4 revealed that arterial and venous identity is not distinguishable in emergent pulmonary vasculature. Collectively, this study provides evidence that lung vascularization initially originates in the mesenchyme, distal to the epithelium, and that arterial-venous specification does not exist in the early lung. At a mechanistic level, we show that basilar epithelial VEGF prompts endothelial cells to move toward the epithelium where they undergo morphogenesis during the proliferative, canalicular stage. Thus our findings challenge existing notions of vascular origin and identity during development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号