首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Emerging evidence has demonstrated that miRNA sequences can regulate skeletal myogenesis by controlling the process of myoblast proliferation and differentiation. However, at present a deep analysis of miRNA expression in control and FSHD myoblasts during differentiation has not yet been derived. To close this gap, we used a next-generation sequencing (NGS) approach applied to in vitro myogenesis. Furthermore, to minimize sample genetic heterogeneity and muscle-type specific patterns of gene expression, miRNA profiling from NGS data was filtered with FC≥4 (log2FC≥2) and p-value<0.05, and its validation was derived by qRT-PCR on myoblasts from seven muscle districts. In particular, control myogenesis showed the modulation of 38 miRNAs, the majority of which (34 out 38) were up-regulated, including myomiRs (miR-1, -133a, -133b and -206). Approximately one third of the modulated miRNAs were not previously reported to be involved in muscle differentiation, and interestingly some of these (i.e. miR-874, -1290, -95 and -146a) were previously shown to regulate cell proliferation and differentiation. FSHD myogenesis evidenced a reduced number of modulated miRNAs than healthy muscle cells. The two processes shared nine miRNAs, including myomiRs, although with FC values lower in FSHD than in control cells. In addition, FSHD cells showed the modulation of six miRNAs (miR-1268, -1268b, -1908, 4258, -4508- and -4516) not evidenced in control cells and that therefore could be considered FSHD-specific, likewise three novel miRNAs that seem to be specifically expressed in FSHD myotubes. These data further clarify the impact of miRNA regulation during control myogenesis and strongly suggest that a complex dysregulation of miRNA expression characterizes FSHD, impairing two important features of myogenesis: cell cycle and muscle development. The derived miRNA profiling could represent a novel molecular signature for FSHD that includes diagnostic biomarkers and possibly therapeutic targets.  相似文献   

2.
3.
Biomarkers are critically important for disease diagnosis and monitoring. In particular, close monitoring of disease evolution is eminently required for the evaluation of therapeutic treatments. Classical monitoring methods in muscular dystrophies are largely based on histological and molecular analyses of muscle biopsies. Such biopsies are invasive and therefore difficult to obtain. The serum protein creatine kinase is a useful biomarker, which is however not specific for a given pathology and correlates poorly with the severity or course of the muscular pathology. The aim of the present study was the systematic evaluation of serum microRNAs (miRNAs) as biomarkers in striated muscle pathologies. Mouse models for five striated muscle pathologies were investigated: Duchenne muscular dystrophy (DMD), limb-girdle muscular dystrophy type 2D (LGMD2D), limb-girdle muscular dystrophy type 2C (LGMD2C), Emery-Dreifuss muscular dystrophy (EDMD) and hypertrophic cardiomyopathy (HCM). Two-step RT-qPCR methodology was elaborated, using two different RT-qPCR miRNA quantification technologies. We identified miRNA modulation in the serum of all the five mouse models. The most highly dysregulated serum miRNAs were found to be commonly upregulated in DMD, LGMD2D and LGMD2C mouse models, which all exhibit massive destruction of striated muscle tissues. Some of these miRNAs were down rather than upregulated in the EDMD mice, a model without massive myofiber destruction. The dysregulated miRNAs identified in the HCM model were different, with the exception of one dysregulated miRNA common to all pathologies. Importantly, a specific and distinctive circulating miRNA profile was identified for each studied pathological mouse model. The differential expression of a few dysregulated miRNAs in the DMD mice was further evaluated in DMD patients, providing new candidates of circulating miRNA biomarkers for DMD.  相似文献   

4.
5.
6.
FXR1P is one of two autosomal paralogs of the fragile X mental retardation protein FMRP. The absence of FMRP causes fragile X syndrome, the leading cause of hereditary mental retardation. FXR1P plays an important role in normal muscle development and has been implicated in facioscapulohumeral muscular dystrophy (FSHD). Its absence also causes cardiac abnormalities in both mice and zebrafish. To examine miRNA-mediated regulation of FMRP and FXR1P, we studied their expression in a conditional Dicer knockdown cell line, DT40. We found that FXR1P, but not FMRP, is significantly increased upon Dicer knockdown and the consequent reduction of miRNAs, suggesting that FXR1P is regulated by miRNAs while FMRP is not in DT40 cells. Expression of a luciferase reporter bearing the 3′ untranslated region (3′UTR) of FXR1 was significantly increased in the absence of miRNAs, confirming miRNA-mediated regulation of FXR1P, while a luciferase reporter bearing the FMR1 3′UTR was not. We identified one of the regulatory regions in the 3′UTR of FXR1 by removing a conserved, 8-nucleotide miRNA seed sequence common to miRNAs 25, 32, 92, 363, and 367 and demonstrated loss of miRNA-mediated suppression. Treatment with specific miRNA hairpin inhibitors to each of the miRNAs in the seed sequence showed that miRs 92b, 363, and 367 regulated FXR1P expression. Accordingly, overexpression of the miRNA 367 mimic significantly decreased endogenous FXR1P expression in human cell lines HEK-293T and HeLa. We report for the first time that FXR1P is regulated through miRNA binding, with one site being the miR-25/32/92/363/367 seed sequence.  相似文献   

7.
BackgroundDifferential microRNA (miRNA) expression profiles in plasma or serum were identified, providing foundation for studying their potentially diagnostic role in colorectal cancer (CRC).MethodsWe performed S-poly(T) Plus PCR assay to select and validate differentially expressed plasma miRNAs from a sample set including 101 CRC patients, 20 patients with colorectal noncancerous polyps (NCP), and 134 healthy controls. And bioinformatics methods was used to integrated predicted or validated targets of the differentially dysregulated miRNAs and analyzed their overrepresented pathways.ResultsAfter the two-phase selection and validation process, we identified a miRNA panel (miR-144-3p, miR-425-5p, and miR-1260b) with high diagnostic efficiency for CRC; the panel distinguished CRC patients from controls with 93.8% sensitivity and 91.3% specificity. Results indicated that the dysregulated miRNAs in CRC were functionally involved in several key cancer-related pathways, such as axonal guidance, PI3K, and calcium signaling pathways.ConclusionsOur study demonstrated that a plasma 3-miRNA panel may serve as a novel noninvasive biomarker to diagnose CRC. This plasma 3-miRNA panel may be related to CRC development. However, further studies are needed to highlight its theoretical strengths.  相似文献   

8.
微RNA(microRNA,miRNA)是一类在分子进化中十分保守的非编码RNA,长度约22个核苷酸,一般情况下它在转录后水平抑制基因表达。miRNA在细胞增殖、分化、凋亡等诸多生理过程中发挥着重要作用。有些miRNA具有组织特异性表达,其中miR-206是目前发现的唯一在骨骼肌中特异表达的miRNA,它在调节骨骼肌发生过程中扮演重要角色。miR-206表达异常与一些肌肉相关疾病如肌肉营养不良、肌萎缩性侧索硬化症等有关。此外,在Texel羊中,myostatin基因的一个点突变就产生了一个miR-206和miR-1的靶点,抑制了myostain基因的表达,从而产生了双肌表型。因此,miR-206有可能成为治疗肌肉相关疾病和畜禽改良育种的重要候选分子。  相似文献   

9.
ObjectiveThis study aims to profile dysregulated microRNA (miRNA) expression in clear cell renal cell carcinoma (ccRCC) and to identify key regulatory miRNAs in ccRCC.ConclusionsThis study identified 11 commonly dysregulated miRNAs in ccRCC, three of which (miR-199a-5p, miR-22 and miR-429) may represent key miRNAs involved in the pathogenesis of ccRCC. Further studies suggested that miR-199a-5p plays an important role in inhibition of cell invasion of ccRCC cells by suppressing expression of TGFBR1 and JunB.  相似文献   

10.
Many microRNAs (miRNAs) are known to be cell-type specific and are implicated in development of diseases. We investigated the global expression pattern of miRNAs in human pancreatic islets compared to liver and skeletal muscle, using bead-based technology and quantitative RT-PCR. In addition to the known islet-specific miR-375, we also found enrichment of miR-127-3p, miR-184, miR-195 and miR-493∗ in the pancreatic islets. The expression of miR-375, miR-127-3p, miR-184 and the liver-enriched miR-122 is positively correlated to insulin biosynthesis, while the expression of miR-127-3p and miR-184 is negatively correlated to glucose-stimulated insulin secretion (GSIS). These correlations were absent in islets of glucose intolerant donors (HbA1c ? 6.1). We suggest that the presence of an islet-specific miRNA network, which consists of at least miR-375, miR-127-3p and miR-184, potentially involved in insulin secretion. Our results provide new insight into miRNA-mediated regulation of insulin secretion in healthy and glucose intolerant subjects.  相似文献   

11.
Membranous glomerulonephropathy (MGN) is a glomerulopathy characterized by subepithelial deposits of immune complexes on the extracapillary side of the glomerular basement membrane. Insertion of C5b-9 (complement membrane-attack complex) into the membrane leads to functional impairment of the glomerular capillary wall. Knowledge of the molecular pathogenesis of MGN is actually scanty. MicroRNA (miRNA) profiling in MGN and unaffected tissues was performed by TaqMan Low-Density Arrays. Expression of miRNAs and miRNA targets was evaluated in Real-Time polymerase chain reaction (PCR). In vitro transient silencing of miRNAs was achieved through transfection with miRNA inhibitors. Ten miRNAs (let-7a-5p, let-7b-5p, let-7c-5p, let-7d-5p, miR-107, miR-129-3p, miR-423-5p, miR-516-3p, miR-532-3p, and miR-1275) were differentially expressed (DE) in MGN biopsies compared to unaffected controls. Interleukin 6 (IL6) and MYC messenger RNAs (mRNAs; targets of DE miRNAs) were significantly downregulated in biopsies from MGN patients, and upregulated in A498 cells following let-7a-5p or let-7c-5p transient silencing. Gene ontology analysis showed that DE miRNAs regulate pathways associated with MGN pathogenesis, including cell cycle, proliferation, and apoptosis. A significant correlation between DE miRNAs and mRNAs and clinical parameters (i.e., antiphospholipid antibodies, serum creatinine, estimated glomerular filtration, proteinuria, and serum cholesterol) has been detected. Based on our data, we propose that DE miRNAs and their downstream network may be involved in MGN pathogenesis and could be considered as potential diagnostic biomarkers of MGN.  相似文献   

12.
13.
A miRNA signature of prion induced neurodegeneration   总被引:1,自引:0,他引:1  
MicroRNAs (miRNAs) are small, non-coding RNA molecules which are emerging as key regulators of numerous cellular processes. Compelling evidence links miRNAs to the control of neuronal development and differentiation, however, little is known about their role in neurodegeneration. We used microarrays and RT-PCR to profile miRNA expression changes in the brains of mice infected with mouse-adapted scrapie. We determined 15 miRNAs were de-regulated during the disease processes; miR-342-3p, miR-320, let-7b, miR-328, miR-128, miR-139-5p and miR-146a were over 2.5 fold up-regulated and miR-338-3p and miR-337-3p over 2.5 fold down-regulated. Only one of these miRNAs, miR-128, has previously been shown to be de-regulated in neurodegenerative disease. De-regulation of a unique subset of miRNAs suggests a conserved, disease-specific pattern of differentially expressed miRNAs is associated with prion-induced neurodegeneration. Computational analysis predicted numerous potential gene targets of these miRNAs, including 119 genes previously determined to be also de-regulated in mouse scrapie. We used a co-ordinated approach to integrate miRNA and mRNA profiling, bioinformatic predictions and biochemical validation to determine miRNA regulated processes and genes potentially involved in disease progression. In particular, a correlation between miRNA expression and putative gene targets involved in intracellular protein-degradation pathways and signaling pathways related to cell death, synapse function and neurogenesis was identified.  相似文献   

14.
15.
16.
Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disorder that occurs due to inactivating mutations in DMD gene, leading to muscular dystrophy. Prediction of pathological complications of DMD and the identification of female carriers are important research points that aim to reduce disease burden. Herein, we describe a case of a late DMD patient and his immediate female family members, who all carry same DMD mutation and exhibited varied degrees of symptoms. In our study, we sequenced the whole miRNome in leukocytes and plasma of the family members and results were validated using real-time PCR. Our results highlighted the role of miR-409-3p, miR-424-5p, miR-144-3p as microRNAs that show correlation with the extent of severity of muscular weakness and can be used for detection of asymptomatic carriers. Cellular and circulating levels of miR-494-3p had shown significant increase in symptomatic carriers, which may indicate significant roles played by this miRNA in the onset of muscular weakness. Interestingly, circulating levels of miR-206 and miR-410-3p were significantly increased only in the severely symptomatic carrier. In conclusion, our study highlighted several miRNA species, which could be used in predicting the onset of muscle and/or neurological complications in DMD carriers.  相似文献   

17.
18.
19.
BackgroundDiffuse large B-cell lymphoma (DLBCL) is an aggressive disease, with 30% to 40% of patients failing to be cured with available primary therapy. microRNAs (miRNAs) are RNA molecules that attenuate expression of their mRNA targets. To characterize the DLBCL miRNome, we sequenced miRNAs from 92 DLBCL and 15 benign centroblast fresh frozen samples and from 140 DLBCL formalin-fixed, paraffin-embedded tissue samples for validation.ResultsWe identify known and candidate novel miRNAs, 25 of which are associated with survival independently of cell-of-origin and International Prognostic Index scores, which are established indicators of outcome. Of these 25 miRNAs, six miRNAs are significantly associated with survival in our validation cohort. Abundant expression of miR-28-5p, miR-214-5p, miR-339-3p, and miR-5586-5p is associated with superior outcome, while abundant expression of miR-324-5p and NOVELM00203M is associated with inferior outcome. Comparison of DLBCL miRNA-seq expression profiles with those from other cancer types identifies miRNAs that were more abundant in B-cell contexts. Unsupervised clustering of miRNAs identifies two clusters of patients that have distinct differences in their outcomes. Our integrative miRNA and mRNA expression analyses reveal that miRNAs increased in abundance in DLBCL appear to regulate the expression of genes involved in metabolism, cell cycle, and protein modification. Additionally, these miRNAs, including one candidate novel miRNA, miR-10393-3p, appear to target chromatin modification genes that are frequent targets of somatic mutation in non-Hodgkin lymphomas.ConclusionsOur comprehensive sequence analysis of the DLBCL miRNome identifies candidate novel miRNAs and miRNAs associated with survival, reinforces results from previous mutational analyses, and reveals regulatory networks of significance for lymphomagenesis.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0568-y) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号