首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   385210篇
  免费   44733篇
  国内免费   234篇
  2018年   3371篇
  2016年   5115篇
  2015年   8146篇
  2014年   9357篇
  2013年   12189篇
  2012年   14903篇
  2011年   14577篇
  2010年   9754篇
  2009年   9184篇
  2008年   12938篇
  2007年   13270篇
  2006年   12367篇
  2005年   12190篇
  2004年   11863篇
  2003年   11730篇
  2002年   11140篇
  2001年   12114篇
  2000年   11995篇
  1999年   10182篇
  1998年   4706篇
  1997年   4415篇
  1996年   4318篇
  1995年   4218篇
  1994年   4135篇
  1993年   4163篇
  1992年   8886篇
  1991年   8610篇
  1990年   8358篇
  1989年   8287篇
  1988年   7832篇
  1987年   7743篇
  1986年   7152篇
  1985年   7479篇
  1984年   6450篇
  1983年   5762篇
  1982年   4813篇
  1981年   4590篇
  1980年   4218篇
  1979年   6336篇
  1978年   5097篇
  1977年   4824篇
  1976年   4655篇
  1975年   4884篇
  1974年   5415篇
  1973年   5277篇
  1972年   4815篇
  1971年   4353篇
  1970年   3848篇
  1969年   3844篇
  1968年   3414篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
1.
While supertrees have been built for many vertebrate groups (notably birds, mammals and dinosaurs), invertebrates have attracted relatively little attention. The paucity of supertrees of arthropods is particularly surprising given their economic and ecological importance, as well as their overwhelming contribution to biodiversity. The absence of comprehensive archives of machine-readable source trees, coupled with the need for software implementing repeatable protocols for managing them, has undoubtedly impeded progress. Here we present a supertree of Achelata (spiny, slipper and coral lobsters) as a proof of concept, constructed using new supertree specific software (the Supertree Toolkit; STK) and following a published protocol. We also introduce a new resource for archiving and managing published source trees. Our supertree of Achelata is synthesised from morphological and molecular source trees, and represents the most complete species-level tree of the group to date. Our findings are consistent with recent taxonomic treatments, confirming the validity of just two families: Palinuridae and Scyllaridae; Synaxidae were resolved within Palinuridae. Monophyletic Silentes and Stridentes lineages are recovered within Palinuridae, and all sub-families within Scyllaridae are found to be monophyletic with the exception of Ibacinae. We demonstrate the feasibility of building larger supertrees of arthropods, with the ultimate objective of building a complete species-level phylogeny for the entire phylum using a divide and conquer strategy.  相似文献   
2.
Tourism accounts for 9% of global GDP and comprises 1.1 billion tourist arrivals per annum. Visits to wildlife tourist attractions (WTAs) may account for 20–40% of global tourism, but no studies have audited the diversity of WTAs and their impacts on the conservation status and welfare of subject animals. We scored these impacts for 24 types of WTA, visited by 3.6–6 million tourists per year, and compared our scores to tourists’ feedback on TripAdvisor. Six WTA types (impacting 1,500–13,000 individual animals) had net positive conservation/welfare impacts, but 14 (120,000–340,000 individuals) had negative conservation impacts and 18 (230,000–550,000 individuals) had negative welfare impacts. Despite these figures only 7.8% of all tourist feedback on these WTAs was negative due to conservation/welfare concerns. We demonstrate that WTAs have substantial negative effects that are unrecognised by the majority of tourists, suggesting an urgent need for tourist education and regulation of WTAs worldwide.  相似文献   
3.
4.
5.
6.
7.
8.
9.
Abstract: The glial fibrillary acidic protein (GFAP) content was investigated using immunoblotting techniques in the septum and hippocampus of the rat after bilateral lateral fimbria transection. Seven days after surgery GFAP content increased significantly both in the septum (140% of control) and hippocampus (120% in dorsal, the less denervated, and 145% in the most denervated ventral part), indicating the occurrence of reactive gliosis. The GM1 treatment caused statistically significant attenuation of GFAP increment in all hippocampal parts. In contrast, GM1 treatment has no influence on the increase of GFAP content in the septum. Results suggest a differential effect of GM1 on the two gliotic reactions formed as a consequence of the lesion at the level of the source of innervation (septum) and the target (hippocampus).  相似文献   
10.
Abstract. The in vitro proliferation [uptake of 5-bromo-2'-deoxyuridine (BrdU)] and the degree of differentiation (presence of desmin) of myosatellite cells isolated from white axial muscle of carp between 3 cm and 27 cm standard length (SL) were examined 17 h after isolation. The fraction of the myosatellite cells that were both desmin positive and BrdU positive never exceeded 2% of the total number of isolated myosatellite cells, irrespective of the standard length of the donor(s). This indicates that, for carp, the temporal relationship between replication and desmin expression of myosatellite cells is different from that described for myogenic cells of mammals and birds. The percentage of BrdU positive myosatellite cells was significantly correlated with standard length: it increased from 10% for carp of about 5 cm SL to 40–50% for carp between 20 cm and 27 cm SL. The percentage of desmin positive myosatellite cells was about 50–60%; it was not significantly correlated with standard length. The percentage of myosatellite cells that were both BrdU negative and desmin negative showed a stepwise difference in this percentage with increasing length. Fish smaller than 10 cm SL, had more of these cells (10–40%), than larger fish (which had 0–12%). So, apparently the composition of the myosatellite cell population changes during growth. The low percentage of proliferating cells, and the relatively high percentage of differentiated (desmin positive) myosatellite cells obtained from 3–6 cm large carp, suggests that, in these small fish, muscle growth strongly depends on the use of a pool of myogenic cells that has been formed at an earlier stage of their development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号