首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
BackgroundADAR enzymes convert adenosines to inosines within double-stranded RNAs, including microRNA (miRNA) precursors, with important consequences on miRNA retargeting and expression. ADAR2 activity is impaired in glioblastoma and its rescue has anti-tumoral effects. However, how ADAR2 activity may impact the miRNome and the progression of glioblastoma is not known.ResultsBy integrating deep-sequencing and array approaches with bioinformatics analyses and molecular studies, we show that ADAR2 is essential to edit a small number of mature miRNAs and to significantly modulate the expression of about 90 miRNAs in glioblastoma cells. Specifically, the rescue of ADAR2 activity in cancer cells recovers the edited miRNA population lost in glioblastoma cell lines and tissues, and rebalances expression of onco-miRNAs and tumor suppressor miRNAs to the levels observed in normal human brain. We report that the major effect of ADAR2 is to reduce the expression of a large number of miRNAs, most of which act as onco-miRNAs. ADAR2 can edit miR-222/221 and miR-21 precursors and decrease the expression of the corresponding mature onco-miRNAs in vivo and in vitro, with important effects on cell proliferation and migration.ConclusionsOur findings disclose an additional layer of complexity in miRNome regulation and provide information to better understand the impact of ADAR2 editing enzyme in glioblastoma. We propose that ADAR2 is a key factor for maintaining edited-miRNA population and balancing the expression of several essential miRNAs involved in cancer.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0575-z) contains supplementary material, which is available to authorized users.  相似文献   

3.
Apoptosis is genetically regulated and involves intrinsic and extrinsic pathways. We examined 133 genes within these pathways to identify whether they are expressed differently in colorectal carcinoma (CRC) and normal tissue (N?=?217) and if they are associated with similar differential miRNA expression. Gene expression data (RNA-Seq) and miRNA expression data (Agilent Human miRNA Microarray V19.0) were generated. We focused on dysregulated genes with a fold change (FC) of >?1.50 or <?0.67, that were significant after adjustment for multiple comparisons. miRNA:mRNA seed-region matches were determined. Twenty-three genes were significantly downregulated (FC?<?0.67) and 18 were significantly upregulated (FC?>?1.50). Of these 41 genes, 11 were significantly associated with miRNA differential expression. BIRC5 had the greatest number of miRNA associations (14) and the most miRNAs with a seed-region match (10). Four of these matches, miR-145-5p, miR-150-5p, miR-195-5p, and miR-650, had a negative beta coefficient. CSF2RB was associated with ten total miRNAs (five with a seed-region match, and one miRNA, miR-92a-3p, with a negative beta coefficient). Of the three miRNAs associated with CTSS, miR-20b-5p, and miR-501-3p, had a seed-region match and a negative beta coefficient between miRNA:mRNA pairs. Several miRNAs that were associated with dysregulated gene expression, seed-region matches, and negative beta coefficients also were associated with CRC-specific survival. Our data suggest that miRNAs could influence several apoptosis-related genes. BIRC5, CTSS, and CSF2R all had seed-region matches with miRNAs that would favor apoptosis. Our study identifies several miRNA associated with apoptosis-related genes, that if validated, could be important therapeutic targets.  相似文献   

4.
Abstract

The prognostic, diagnostic and therapeutic value of microRNA (miRNA) expression aberrations in renal fibrosis has been studied in recent years. However, the miRNA expression profiling efforts have led to inconsistent results between the studies. The aim of this study was to perform a meta-analysis on the renal fibrosis miRNA expression profiling studies to identify candidate diagnostic biomarkers. We performed comprehensive literature searches in several databases to identify miRNA expression studies of renal fibrosis in animal models and humans. The miRNAs expression data were extracted from 20 included studies, and both miRNA vote-counting strategy and Robust Rank Aggregation method were utilized to identify significant miRNA meta-signatures. The predicted and validated targets of miRNA meta-signature were obtained by using MultiMiR package in 11 databases. Then a gene set enrichment analysis (KEGG, PANTHER pathways and GO processes) were carried out with GeneCodis web tool to recognize pathways that are most strongly influenced by modified expressions of these miRNAs. We recognized in both meta-analysis approaches a significant miRNA meta-signature of five up-regulated (miR-142-3p, miR-223-3p, miR-21-5p, miR-142-5p and miR-214-3p) and two down-regulated (miR-29c-3p and miR-200a-3p) miRNAs. Enrichment analysis confirmed that miRNA meta-signature cooperatively target functionally related genes in signalling and developmental pathways in renal fibrosis. This meta-analysis identified seven highly significant and consistently dysregulated miRNAs from 20 datasets, as the focus of future investigations to discover their potential influence to renal fibrosis and their clinical utility as biomarkers and/or as therapeutic mediators against chronic kidney disease..  相似文献   

5.
6.
MicroRNAs play a fundamental role in retinal development and function. To characterise the miRNome of the human retina, we carried out deep sequencing analysis on sixteen individuals. We established the catalogue of retina-expressed miRNAs, determined their relative abundance and found that a small number of miRNAs accounts for almost 90% of the retina miRNome. We discovered more than 3000 miRNA variants (isomiRs), encompassing a wide range of sequence variations, which include seed modifications that are predicted to have an impact on miRNA action. We demonstrated that a seed-modifying isomiR of the retina-enriched miR-124-3p was endowed with different targeting properties with respect to the corresponding canonical form. Moreover, we identified 51 putative novel, retina-specific miRNAs and experimentally validated the expression for nine of them. Finally, a parallel analysis of the human Retinal Pigment Epithelium (RPE)/choroid, two tissues that are known to be crucial for retina homeostasis, yielded notably distinct miRNA enrichment patterns compared to the retina. The generated data are accessible through an ad hoc database. This study is the first to reveal the complexity of the human retina miRNome at nucleotide resolution and constitutes a unique resource to assess the contribution of miRNAs to the pathophysiology of the human retina.  相似文献   

7.
8.

Background

Allergic airway diseases (AADs) such as asthma are characterized in part by granulocytic airway inflammation. The gene regulatory networks that govern granulocyte recruitment are poorly understood, but evidence is accruing that microRNAs (miRNAs) play an important role. To identify miRNAs that may underlie AADs, we used two complementary approaches that leveraged the genotypic and phenotypic diversity of the Collaborative Cross (CC) mouse population. In the first approach, we sought to identify miRNA expression quantitative trait loci (eQTL) that overlap QTL for AAD-related phenotypes. Specifically, CC founder strains and incipient lines of the CC were sensitized and challenged with house dust mite allergen followed by measurement of granulocyte recruitment to the lung. Total lung RNA was isolated and miRNA was measured using arrays for CC founders and qRT-PCR for incipient CC lines.

Results

Among CC founders, 92 miRNAs were differentially expressed. We measured the expression of 40 of the most highly expressed of these 92 miRNAs in the incipient lines of the CC and identified 18 eQTL corresponding to 14 different miRNAs. Surprisingly, half of these eQTL were distal to the corresponding miRNAs, and even on different chromosomes. One of the largest-effect local miRNA eQTL was for miR-342-3p, for which we identified putative causal variants by bioinformatic analysis of the effects of single nucleotide polymorphisms on RNA structure. None of the miRNA eQTL co-localized with QTL for eosinophil or neutrophil recruitment. In the second approach, we constructed putative miRNA/mRNA regulatory networks and identified three miRNAs (miR-497, miR-351 and miR-31) as candidate master regulators of genes associated with neutrophil recruitment. Analysis of a dataset from human keratinocytes transfected with a miR-31 inhibitor revealed two target genes in common with miR-31 targets correlated with neutrophils, namely Oxsr1 and Nsf.

Conclusions

miRNA expression in the allergically inflamed murine lung is regulated by genetic loci that are smaller in effect size compared to mRNA eQTL and often act in trans. Thus our results indicate that the genetic architecture of miRNA expression is different from mRNA expression. We identified three miRNAs, miR-497, miR-351 and miR-31, that are candidate master regulators of genes associated with neutrophil recruitment. Because miR-31 is expressed in airway epithelia and is predicted to target genes with known links to neutrophilic inflammation, we suggest that miR-31 is a potentially novel regulator of airway inflammation.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1732-9) contains supplementary material, which is available to authorized users.  相似文献   

9.
ABSTRACT: BACKGROUND: MicroRNA (miRNA) expression is known to be deregulated in ovarian carcinomas. However, limited data is available about the miRNA expression pattern for the benign or borderline ovarian tumors as well as differential miRNA expression pattern associated with histological types, grades or clinical stages in ovarian carcinomas. We defined patterns of microRNA expression in tissues from normal, benign, borderline, and malignant ovarian tumors and explored the relationship between frequently deregulated miRNAs and clinicopathologic findings, response to therapy, survival, and association with Her-2/neu status in ovarian carcinomas. METHODS: We measured the expression of nine miRNAs (miR-181d, miR-30a-3p, miR-30c, miR-30d, miR-30e-3p, miR-368, miR-370, miR-493-5p, miR-532-5p) in 171 formalin-fixed, paraffin-embedded ovarian tissue blocks as well as six normal human ovarian surface epithelial (HOSE) cell lines using Taqman-based real-time PCR assays. Her-2/neu overexpression was assessed in ovarian carcinomas (n = 109 cases) by immunohistochemistry analysis. RESULTS: Expression of four miRNAs (miR-30c, miR-30d, miR-30e-3p, miR-370) was significantly different between carcinomas and benign ovarian tissues as well as between carcinoma and borderline tissues. An additional three miRNAs (miR-181d, miR-30a-3p, miR-532-5p) were significantly different between borderline and carcinoma tissues. Expression of miR-532-5p was significantly lower in borderline than in benign tissues. Among ovarian carcinomas, expression of four miRNAs (miR-30a-3p, miR-30c, miR-30d, miR-30e-3p) was lowest in mucinous and highest in clear cell samples. Expression of miR-30a-3p was higher in well-differentiated compared to poorly differentiated tumors (P = 0.02), and expression of miR-370 was higher in stage I/II compared to stage III/IV samples (P = 0.03). In multivariate analyses, higher expression of miR-181d, miR-30c, miR-30d, and miR-30e-3p was associated with significantly better disease-free or overall survival. Finally, lower expression of miR-30c, miR-30d, miR-30e-3p and miR-532-5p was significantly associated with overexpression of Her-2/neu. CONCLUSIONS: Aberrant expression of miRNAs is common in ovarian tumor suggesting involvement of miRNA in ovarian tumorigenesis. They are associated with histology, clinical stage, survival and oncogene expression in ovarian carcinoma.  相似文献   

10.
Aberrant regulation of miRNA genes contributes to pathogenesis of a wide range of human diseases, including cancer. The TAR DNA binding protein 43 (TDP-43), a RNA/DNA binding protein associated with neurodegeneration, is involved in miRNA biogenesis. Here, we systematically examined miRNAs regulated by TDP-43 using RNA-Seq coupled with an siRNA-mediated knockdown approach. TDP-43 knockdown affected the expression of a number of miRNAs. In addition, TDP-43 down-regulation led to alterations in the patterns of different isoforms of miRNAs (isomiRs) and miRNA arm selection, suggesting a previously unknown role of TDP-43 in miRNA processing. A number of TDP-43 associated miRNAs, and their candidate target genes, are associated with human cancers. Our data reveal highly complex roles of TDP-43 in regulating different miRNAs and their target genes. Our results suggest that TDP-43 may promote migration of lung cancer cells by regulating miR-423-3p. In contrast, TDP-43 increases miR-500a-3p expression and binds to the mature miR-500a-3p sequence. Reduced expression of miR-500a-3p is associated with poor survival of lung cancer patients, suggesting that TDP-43 may have a suppressive role in cancer by regulating miR-500a-3p. Cancer-associated genes LIF and PAPPA are possible targets of miR-500a-3p. Our work suggests that TDP-43-regulated miRNAs may play multifaceted roles in the pathogenesis of cancer.  相似文献   

11.
Abstract

Purpose: To identify miRNAs associated with distant recurrence during tamoxifen treatment and build a recurrence prediction model.

Materials and methods: We measured the expression of five miRNAs (miR-134, miR-125b-5P, miRNA-30a, miR-10a-5p and miR-222). A total of 176 tumour tissues from 176 patients who had hormone receptor positive breast cancer with tamoxifen treatment were used to measure miRNA expression using quantitative real-time PCR (qRT-PCR).

Results: The five miRNAs were all up-regulated in distant recurrence cases within 5?years after surgery and during tamoxifen treatment. Kaplan-Meier survival analyses based on expression cut-offs determined by receiver characteristics curves (ROC) showed that high expression of miR-134, miR-125b-5P, miRNA-30a, miR-10a-5p and miR-222 were significantly (log-rank p-value =0.006, p-value <0.0001, p-value <0.0001, p-value <0.0001 and p-value <0.0001, respectively) associated with short relapse-free time. Our results were used to build a combined 3 miRNAs expression model. It could be used to categorize high-risk subset of patients with short relapse-free survival (AUC =0.891, p-value <0.0001).

Conclusions: Distant recurrence during tamoxifen treatment of hormone positive breast cancer might be affected by tamoxifen resistance related miRNAs. Such distant recurrence can be predicted using miRNA measurement.  相似文献   

12.
A miRNA signature of prion induced neurodegeneration   总被引:1,自引:0,他引:1  
MicroRNAs (miRNAs) are small, non-coding RNA molecules which are emerging as key regulators of numerous cellular processes. Compelling evidence links miRNAs to the control of neuronal development and differentiation, however, little is known about their role in neurodegeneration. We used microarrays and RT-PCR to profile miRNA expression changes in the brains of mice infected with mouse-adapted scrapie. We determined 15 miRNAs were de-regulated during the disease processes; miR-342-3p, miR-320, let-7b, miR-328, miR-128, miR-139-5p and miR-146a were over 2.5 fold up-regulated and miR-338-3p and miR-337-3p over 2.5 fold down-regulated. Only one of these miRNAs, miR-128, has previously been shown to be de-regulated in neurodegenerative disease. De-regulation of a unique subset of miRNAs suggests a conserved, disease-specific pattern of differentially expressed miRNAs is associated with prion-induced neurodegeneration. Computational analysis predicted numerous potential gene targets of these miRNAs, including 119 genes previously determined to be also de-regulated in mouse scrapie. We used a co-ordinated approach to integrate miRNA and mRNA profiling, bioinformatic predictions and biochemical validation to determine miRNA regulated processes and genes potentially involved in disease progression. In particular, a correlation between miRNA expression and putative gene targets involved in intracellular protein-degradation pathways and signaling pathways related to cell death, synapse function and neurogenesis was identified.  相似文献   

13.
Interleukin 4 (IL-4) induces B-cell differentiation and survival of chronic lymphocytic leukemia (CLL) cells. MicroRNAs (miRNAs) regulate mRNA and protein expression, and several miRNAs, deregulated in CLL, might play roles as oncogenes or tumor suppressors. We have studied the miRNA profile of CLL, and its response to IL-4, by oligonucleotide microarrays, resulting in the detection of a set of 129 mature miRNAs consistently expressed in CLL, which included 41 differentially expressed compared to normal B cells (NBC), and 6 significantly underexpressed in ZAP-70 positive patients. IL-4 stimulation brought about up-regulation of the 5p and 3p mature variants of the miR-21 gene, which maps immediately downstream to the VMP1 gene, and of the mature forms generated from the miR-362 (3p and 5p), miR-500a (3p), miR-502 (3p), and miR-532 (3p and 5p) genes, which map within the third intron of the CLCN5 gene. Both genes are in turn regulated by IL-4, suggesting that these miRNAs were regulated by IL-4 as passengers from their carrier genes. Their levels of up-regulation by IL-4 significantly correlated with cytoprotection. MiR-21 has been reported to be leukemogenic, associated to bad prognosis in CLL, and the miRNA more frequently overexpressed in human cancer. Up-regulation by IL-4 of miR-21 and the miRNAs hosted in the CLCN5 locus may contribute to evasion of apoptosis of CLL cells. These findings indicate that the IL-4 pathway and the miRNAs induced by IL-4 are promising targets for the development of novel therapies in CLL.  相似文献   

14.
BackgroundFacioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disorder and is one of the most common forms of muscular dystrophy. We have recently shown that some hallmarks of FSHD are already expressed in fetal FSHD biopsies, thus opening a new field of investigation for mechanisms leading to FSHD. As microRNAs (miRNAs) play an important role in myogenesis and muscle disorders, in this study we compared miRNAs expression levels during normal and FSHD muscle development.MethodsMuscle biopsies were obtained from quadriceps of both healthy control and FSHD1 fetuses with ages ranging from 14 to 33 weeks of development. miRNA expression profiles were analyzed using TaqMan Human MicroRNA Arrays.ResultsDuring human skeletal muscle development, in control muscle biopsies we observed changes for 4 miRNAs potentially involved in secondary muscle fiber formation and 5 miRNAs potentially involved in fiber maturation. When we compared the miRNA profiles obtained from control and FSHD biopsies, we did not observe any differences in the muscle specific miRNAs. However, we identified 8 miRNAs exclusively expressed in FSHD1 samples (miR-330, miR-331-5p, miR-34a, miR-380-3p, miR-516b, miR-582-5p, miR-517* and miR-625) which could represent new biomarkers for this disease. Their putative targets are mainly involved in muscle development and morphogenesis. Interestingly, these FSHD1 specific miRNAs do not target the genes previously described to be involved in FSHD.ConclusionsThis work provides new candidate mechanisms potentially involved in the onset of FSHD pathology. Whether these FSHD specific miRNAs cause deregulations during fetal development, or protect against the appearance of the FSHD phenotype until the second decade of life still needs to be investigated.  相似文献   

15.
16.
17.
18.
19.
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. The disease is characterized by various cytogenetic and molecular abnormalities with distinct prognoses and gene expression profiles. Emerging evidence has suggested that circulating microRNAs (miRNAs) could serve as noninvasive biomarkers for cancer detection; however, little is known about circulating miRNA profiles in AML patients. In this study, a genome-wide serum miRNA expression analysis was performed using Solexa sequencing for initial screen, followed by validation with real-time PCR assays. The analysis was conducted on training and verification sets of serum samples from 140 newly diagnosed AML patients and 135 normal adult donors. After a two-phase selection and validation process, 6 miRNAs, miR-10a-5p, miR-93-5p, miR-129-5p, miR-155-5p, miR-181b-5p and miR-320d, were found to have significantly different expression levels in AML compared with control serum samples. Furthermore, unsupervised clustering analysis revealed the remarkable ability of the 6-miRNA profile to differentiate between AML patients and normal controls. The areas under the ROC curve for the selected miRNAs ranged from 0.8129 to 0.9531. More importantly, miR-181b-5p levels in serum were significantly associated with overall survival. These data demonstrated that the expression patterns of circulating miRNAs were systematically altered in AML and miR-181b-5p may serve as a predictor for overall survival in AML patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号