首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Myelin-associated inhibitory factors (MAIFs) are inhibitors of CNS axonal regeneration following injury. The Nogo receptor complex, composed of the Nogo-66 receptor 1 (NgR1), neurotrophin p75 receptor (p75), and LINGO-1, represses axon regeneration upon binding to these myelin components. The limited expression of p75 to certain types of neurons and its temporal expression during development prompted speculation that other receptors are involved in the NgR1 complex. Here, we show that an orphan receptor in the TNF family called TAJ, broadly expressed in postnatal and adult neurons, binds to NgR1 and can replace p75 in the p75/NgR1/LINGO-1 complex to activate RhoA in the presence of myelin inhibitors. In vitro exogenously added TAJ reversed neurite outgrowth caused by MAIFs. Neurons from Taj-deficient mice were more resistant to the suppressive action of the myelin inhibitors. Given the limited expression of p75, the discovery of TAJ function is an important step for understanding the regulation of axonal regeneration.  相似文献   

2.
Axon regeneration in the injured adult CNS is reportedly inhibited by myelin-derived inhibitory molecules, after binding to a receptor complex comprised of the Nogo-66 receptor (NgR1) and two transmembrane co-receptors p75/TROY and LINGO-1. However, the post-injury expression pattern for LINGO-1 is inconsistent with its proposed function. We demonstrated that AMIGO3 levels were significantly higher acutely than those of LINGO-1 in dorsal column lesions and reduced in models of dorsal root ganglion neuron (DRGN) axon regeneration. Similarly, AMIGO3 levels were raised in the retina immediately after optic nerve crush, whilst levels were suppressed in regenerating optic nerves, induced by intravitreal peripheral nerve implantation. AMIGO3 interacted functionally with NgR1-p75/TROY in non-neuronal cells and in brain lysates, mediating RhoA activation in response to CNS myelin. Knockdown of AMIGO3 in myelin-inhibited adult primary DRG and retinal cultures promoted disinhibited neurite growth when cells were stimulated with appropriate neurotrophic factors. These findings demonstrate that AMIGO3 substitutes for LINGO-1 in the NgR1-p75/TROY inhibitory signalling complex and suggests that the NgR1-p75/TROY-AMIGO3 receptor complex mediates myelin-induced inhibition of axon growth acutely in the CNS. Thus, antagonizing AMIGO3 rather than LINGO-1 immediately after CNS injury is likely to be a more effective therapeutic strategy for promoting CNS axon regeneration when combined with neurotrophic factor administration.  相似文献   

3.
Binding of myelin inhibitors to the NgR1/p75/LINGO-1 signaling complex activates RhoA to mediate the inhibition of axonal outgrowth. The nerve growth factor receptor p75, a TNF family receptor, is absent or poorly expressed in certain types of neurons that respond to myelin inhibitors, thereby prompting speculation that other TNF family receptors are involved in the NgR1 complex. Troy/Taj is an orphan TNF family receptor that is broadly expressed in postnatal and adult neurons. Troy binds to NgR1 and can functionally replace p75 in the p75/NgR1/LINGO-1 complex to activate RhoA and block neurite outgrowth in the presence of myelin inhibitors. Neurons from Troy-deficient mice are more resistant to the suppressive action of the myelin inhibitors. The discovery of TROY function in axon growth is an important step for understanding the complex regulation of axonal regeneration by diverse members of the TNF receptor family.  相似文献   

4.
Upon spinal cord injury, the myelin inhibitors, including the myelin-associated glycoprotein (MAG), Nogo-A and the oligodendrocyte myelin glycoprotein (OMgp), bind to and signal via a single neuronal receptor/co-receptor complex comprising of Nogo receptor 1(NgR1)/LINGO-1 and p75 or TROY, impeding regeneration of injured axons. We employed a cell-free system to study the binding of NgR1 to its co-receptors and the myelin inhibitor Nogo-A, and show that gangliosides mediate the interaction of NgR1 with LINGO-1. Solid phase binding assays demonstrate that the sialic acid moieties of gangliosides and the stalk of NgR1 are the principal determinants of these molecular interactions. Moreover, the tripartite complex comprising of NgR1, LINGO-1 and ganglioside exhibits stronger binding to Nogo-A (Nogo-54) in the presence of p75, suggesting the gangliosides modulate the myelin inhibitor-receptor signaling.  相似文献   

5.
Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), have been on the forefront of drug discovery for most of the myelin inhibitory molecules implicated in axonal regenerative process. Nogo-A along with its putative receptor NgR and co-receptor LINGO-1 has paved the way for the production of pharmaceutical agents such as monoclonal antibodies, which are already put into handful of clinical trials. On the other side, little progress has been made towards clarifying the role of neurotrophin receptor p75 (p75NTR) and TROY in disease progression, other key players of the Nogo receptor complex. Previous work of our lab has shown that their exact location and type of expression is harmonized in a phase-dependent manner. Here, in this review, we outline their façade in normal and diseased central nervous system (CNS) and suggest a role for p75NTR in chronic axonal regeneration whereas TROY in acute inflammation of EAE intercourse.  相似文献   

6.
成体哺乳动物中枢神经损伤后早期轴突再生失败的一个主要原因是由于髓磷脂抑制分子的存在。Nogo、髓磷脂相关糖蛋白以及少突胶质细胞髓磷脂糖蛋白等神经再生抑制因子的发现,大大促进了中枢神经再生分子机制的研究。它们均能独立通过Nogo-66受体产生对轴突再生的抑制效应,髓磷脂抑制分子及其信号转导机制的研究日益成为中枢神经再生的研究热点,髓磷脂及其信号转导分子特别是Nogo-66受体、p75神经营养素受体成为损伤后促进轴突再生、抑制生长锥塌陷的主要治疗靶点。抑制上述抑制因子及相关受体NgR或p75NTR可能有助于中枢神经损伤的修复,围绕这些抑制因子及其相关受体介导的信号转导途径,人们提出了多种治疗中枢神经损伤的新思路,其中免疫学方法尤其受到关注。  相似文献   

7.
LINGO-1-Fc蛋白对低钾诱导小脑颗粒神经元凋亡的保护作用   总被引:1,自引:0,他引:1  
髓鞘抑制因子Nogo-A、MAG和OMgp通过共同的受体信号复合物NgR/p75NTR(或者TROY)发挥对中枢神经纤维再生的抑制作用.新近克隆的跨膜蛋白LINGO-1是该信号途径的另一个重要组成成分和调节分子.LINGO-1特异表达于中枢神经系统,神经元上的LINGO-1被证明参与调节中枢神经再生的抑制信号,而少突胶质细胞表达的LINGO-1分子参与负调节少突胶质细胞的髓鞘化过程.为探讨LINGO-1分子在神经元凋亡过程中的作用,利用包含LINGO-1分子胞外段LRR和IgC2结构域的Fc融合蛋白作为功能性拮抗剂,研究LINGO-1对低钾诱导的小脑颗粒神经元凋亡的保护作用.利用成熟的Hoechst标记凋亡细胞的方法,观察到经LINGO-1-Fc蛋白预处理2h能够显著阻止小脑颗粒神经元的凋亡.仅包括LRR结构域的GST-LINGO-1与LINGO-1-Fc蛋白,虽同样具有与颗粒神经元的结合活性,但是GST-LINGO-1不能有效地阻止低钾诱导的细胞凋亡.这些结果提示,LINGO-1-Fc蛋白能够阻止低钾诱导的小脑颗粒神经元凋亡,并且这种作用可能是IgC2结构域依赖的.  相似文献   

8.
Multiple signals regulate axon regeneration through the nogo receptor complex   总被引:10,自引:0,他引:10  
Several myelin-derived proteins have been identified as components of central nervous system (CNS) myelin, which prevents axonal regeneration in the adult vertebrate CNS. The discovery of the receptor for these proteins was a major step toward understanding the failure of axon regeneration. The receptor complex consists of at least three elements: the p75 receptor (p75NTR), the Nogo receptor and LINGO-1. Downstream from the receptor complex, RhoA activation has been shown to be a key element of the signaling mechanism of these proteins. Rho activation arrests axon growth, and blocking Rho activation promotes axon regeneration in vivo. Recent studies have identified conventional protein kinase C as an additional necessary component for axon growth inhibition. Possible crosstalk downstream of these signals should be explored to clarify all the inhibitory signals and may provide an efficient molecular target against injuries to the CNS.  相似文献   

9.
Neuronal Nogo66 receptor-1 (NgR1) binds the myelin inhibitors NogoA, OMgp, and myelin-associated glycoprotein (MAG) and has been proposed to function as the ligand-binding component of a receptor complex that also includes Lingo-1, p75(NTR), or TROY. In this study, we use Vibrio cholerae neuraminidase (VCN) and mouse genetics to probe the molecular composition of the MAG receptor complex in postnatal retinal ganglion cells (RGCs). We find that VCN treatment is not sufficient to release MAG inhibition of RGCs; however, it does attenuate MAG inhibition of cerebellar granule neurons. Furthermore, the loss of p75(NTR) is not sufficient to release MAG inhibition of RGCs, but p75(NTR-/-) dorsal root ganglion neurons show enhanced growth on MAG compared to wild-type controls. Interestingly, TROY is not a functional substitute for p75(NTR) in RGCs. Finally, NgR1(-/-) RGCs are strongly inhibited by MAG. In the presence of VCN, however, NgR1(-/-) RGCs exhibit enhanced neurite growth. Collectively, our experiments reveal distinct and cell type-specific mechanisms for MAG-elicited growth inhibition.  相似文献   

10.
At least three proteins present in CNS myelin, Nogo, MAG and OMgp are capable of causing growth cone collapse and inhibiting neurite outgrowth in vitro. Surprisingly, Nogo and OMgp are also strongly expressed by many neurons (including neocortical projection cells). Nogo expression is increased by some cells at the borders of CNS lesion sites and by cells in injured peripheral nerves, but Nogo and CNS myelin are largely absent from spinal cord injury sites, which are none the less strongly inhibitory to axonal regeneration. Nogo is found on growing axons during development, suggesting possible functions for neuronal Nogo in axon guidance. Although Nogo, MAG and OMgp lack sequence homologies, they all bind to the Nogo receptor (NgR), a GPI-linked cell surface molecule which, in turn, binds p75 to activate RhoA. NgR is strongly expressed by cerebral cortical neurons but many other neurons express NgR weakly or not at all. Some neurons, such as DRG cells, respond to Nogo and CNS myelin in vitro although they express little or no NgR in vivo which, with other data, indicates that other receptors are available for NgR ligands. NgR expression is unaffected by injury to the nervous system, and there is no clear correlation between NgR expression by neurons and lack of regenerative ability. In the injured spinal cord, interactions between NgR and its ligands are most likely to be important for limiting regeneration of corticospinal and some other descending tracts; other receptors may be more important for ascending tracts. Antibodies to Nogo, mainly the poorly-characterised IN-1 or its derivatives, have been shown to enhance recovery from partial transections of the spinal cord. They induce considerable plasticity from the axons of corticospinal neurons, including sprouting across the midline and, to a limited extent, regeneration around the lesion. Regeneration of corticospinal axons induced by Nogo antibodies has not yet been demonstrated after complete transections or contusion injuries of the spinal cord. It is not clear whether antibodies against Nogo act on oligodendrocytes/myelin or by binding to neuronal Nogo, or whether they can stimulate regeneration of ascending axons in the spinal cord, most of which express little or no NgR. Despite these uncertainties, however, NgR and its ligands offer important new targets for enhancing plasticity and regeneration in the nervous system.  相似文献   

11.
Axon outgrowth inhibition in response to trauma is thought to be mediated via the binding of myelin-associated inhibitory factors (e.g. Nogo-66, myelin-associated glycoprotein, oligodendrocyte myelin glycoprotein, and myelin basic protein) to a putative tripartite LINGO-1·p75NTR·Nogo-66 receptor (NgR) complex at the cell surface. We found that endogenous LINGO-1 expression in neurons in the cortex and cerebellum is intracellular. Mutation or truncation of the highly conserved LINGO-1 C terminus altered this intracellular localization, causing poor intracellular retention and increased plasma membrane expression. p75NTR associated predominantly with natively expressed LINGO-1 containing immature N-glycans, characteristic of protein that has not completed trans-Golgi-mediated processing, whereas mutant forms of LINGO-1 with enhanced plasma membrane expression did not associate with p75NTR. Co-immunoprecipitation experiments demonstrated that LINGO-1 and NgR competed for binding to p75NTR in a manner that is difficult to reconcile with the existence of a LINGO-1·p75NTR·NgR ternary complex. These findings contradict models postulating functional LINGO-1·p75NTR·NgR complexes in the plasma membrane.  相似文献   

12.
Kim JE  Liu BP  Park JH  Strittmatter SM 《Neuron》2004,44(3):439-451
Axon regeneration after injury to the adult mammalian CNS is limited in part by three inhibitory proteins in CNS myelin: Nogo-A, MAG, and OMgp. All three of these proteins bind to a Nogo-66 receptor (NgR) to inhibit axonal outgrowth in vitro. To explore the necessity of NgR for responses to myelin inhibitors and for restriction of axonal growth in the adult CNS, we generated ngr(-/-) mice. Mice lacking NgR are viable but display hypoactivity and motor impairment. DRG neurons lacking NgR do not bind Nogo-66, and their growth cones are not collapsed by Nogo-66. Recovery of motor function after dorsal hemisection or complete transection of the spinal cord is improved in the ngr(-/-) mice. While corticospinal fibers do not regenerate in mice lacking NgR, regeneration of some raphespinal and rubrospinal fibers does occur. Thus, NgR is partially responsible for limiting the regeneration of certain fiber systems in the adult CNS.  相似文献   

13.
The Nogo-66 receptor family (NgR) consists in three glycophosphatidylinositol (GPI)-anchored receptors (NgR1, NgR2 and NgR3), which are primarily expressed by neurons in the central and peripheral mammalian nervous system. NgR1 was identified as serving as a high affinity binding protein for the three classical myelin-associated inhibitors (MAIs) Nogo-A, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp), which limit axon regeneration and sprouting in the injured brain. Recent studies suggest that NgR signaling may also play an essential role in the intact adult CNS in restricting axonal and synaptic plasticity and are involved in neurodegenerative diseases, particularly in Alzheimer's disease pathology through modulation of β-secretase cleavage. Here, we outline the biochemical properties of NgRs and their functional roles in the intact and diseased CNS.  相似文献   

14.
Failure of axon regeneration in the adult mammalian central nervous system (CNS) is at least partly due to inhibitory molecules associated with myelin. Recent studies suggest that an axon surface protein, the Nogo receptor (NgR), may play a role in this process through an unprecedented degree of crossreactivity with myelin-associated inhibitory ligands. Here, we report the 1.5 A crystal structure and functional characterization of a soluble extracellular domain of the human Nogo receptor. Nogo receptor adopts a leucine-rich repeat (LRR) module whose concave exterior surface contains a broad region of evolutionarily conserved patches of aromatic residues, possibly suggestive of degenerate ligand binding sites. A deep cleft at the C-terminal base of the LRR may play a role in NgR association with the p75 coreceptor. These results now provide a detailed framework for focused structure-function studies aimed at assessing the physiological relevance of NgR-mediated protein-protein interactions to axon regeneration inhibition.  相似文献   

15.
16.
Myelin inhibitors of axonal regeneration, like Nogo and MAG, block regrowth after injury to the adult CNS. While a GPI-linked receptor for Nogo (NgR) has been identified, MAG's receptor is unknown. We show that MAG inhibits regeneration by interaction with NgR. Binding of and inhibition by MAG are lost if neuronal GPI-linked proteins are cleaved. Binding of MAG to NgR-expressing cells is GPI dependent and sialic acid independent. Conversely, NgR binds to MAG-expressing cells. MAG, but not a truncated MAG that binds neurons but does not inhibit regeneration, precipitates NgR from NgR-expressing cells, DRG, and cerebellar neurons. Importantly, NgR antibody, soluble NgR, or dominant-negative NgR each prevent inhibition of neurite outgrowth by MAG. Also, MAG and Nogo66 compete for binding to NgR. These results suggest redundancy in myelin inhibitors and indicate therapies for CNS injuries.  相似文献   

17.
Nogo在中枢神经损伤再生中的作用机制   总被引:1,自引:0,他引:1  
Nogo是中枢神经系统(CNS)少突胶质细胞分泌的一种髓磷脂蛋白,它的主要功能是抑制损伤后轴突的再生,它含有两个完全独立的具有抑制活性的结构域:位于细胞内的amino—Nogo和位于细胞表面的Nogo-66。Nogo-66是通过与受体复合体NgR/p75/Lingo—1结合,触发Rho信号通路来发挥作用。Nogo及其信号转导机制日益成为CNS损伤再生的研究热点,就Nogo在CNS损伤再生中的作用机制作一综述。  相似文献   

18.
Identification of Nogo-66 receptor (NgR) and homologous genes in fish   总被引:2,自引:0,他引:2  
The Nogo-66 receptor NgR has been implicated in the mediation of inhibitory effects of central nervous system (CNS) myelin on axon growth in the adult mammalian CNS. NgR binds to several myelin-associated ligands (Nogo-66, myelin associated glycoprotein, and oligodendrocyte-myelin glycoprotein), which, among other inhibitory proteins, impair axonal regeneration in the CNS of adult mammals. In contrast to mammals, severed axons readily regenerate in the fish CNS. Nevertheless, fish axons are repelled by mammalian oligodendrocytes in vitro. Therefore, the identification of fish NgR homologs is a crucial step towards understanding NgR functions in vertebrate systems competent of CNS regeneration. Here, we report the discovery of four zebrafish (Danio rerio) and five fugu (Takifugu rubripes) NgR homologs. Synteny between fish and human, comparable intron-exon structures, and phylogenetic analyses provide convincing evidence that the true fish orthologs were identified. The topology of the phylogenetic trees shows that the extra fish genes were produced by duplication events that occurred in ray-finned fishes before the divergence of the zebrafish and pufferfish lineages. Expression of zebrafish NgR homologs was detected relatively early in development and prominently in the adult brain, suggesting functions in axon growth, guidance, or plasticity.  相似文献   

19.
TROY can functionally substitute p75 to comprise the Nogo receptor complex, which transduces the inhibitory signal of myelin-associated inhibitory factors on axon regeneration following CNS injury. The inhibition of neurite extension relies on TROY-dependent RhoA activation, but how TROY activates RhoA remains unclear. Here, we firstly identified Rho guanine nucleotide dissociation inhibitor α (RhoGDIα) as a binding partner of TROY using GST pull-down combined with two-dimensional gel electrophoresis and mass spectra analysis. The interaction was further confirmed by coimmunoprecipitation in vitro and in vivo. Deletion mutagenesis revealed that two regions of the TROY intracellular domain (amino acids 234–256 and 321–350) were essential for the interaction with RhoGDIα. Secondly, TROY and RhoGDIα were coexpressed in postnatal dorsal root ganglion neurons, cortex neurons, and cerebellar granule neurons (CGNs). Thirdly, TROY/RhoGDIα association was potentiated by Nogo-66 and was independent of p75/RhoGDIα interaction. Fourthly, TROY/RhoGDIα interaction was still able to activate RhoA when p75 was deficient. Furthermore, RhoA activation was decreased dramatically when TROY was knocked down in p75-deficient CGNs cells. Finally, RhoGDIα overexpression abolished RhoA activation and following neurite outgrowth inhibition by Nogo-66 in both wild-type and p75-deficient CGNs. These results showed that the association of RhoGDIα with TROY contributed to TROY-dependent RhoA activation and neurite outgrowth inhibition after Nogo-66 stimulation.  相似文献   

20.
Olfm1, a secreted highly conserved glycoprotein, is detected in peripheral and central nervous tissues and participates in neural progenitor maintenance, cell death in brain, and optic nerve arborization. In this study, we identified Olfm1 as a molecule promoting axon growth through interaction with the Nogo A receptor (NgR1) complex. Olfm1 is coexpressed with NgR1 in dorsal root ganglia and retinal ganglion cells in embryonic and postnatal mice. Olfm1 specifically binds to NgR1, as judged by alkaline phosphatase assay and coimmunoprecipitation. The addition of Olfm1 inhibited the growth cone collapse of dorsal root ganglia neurons induced by myelin-associated inhibitors, indicating that Olfm1 attenuates the NgR1 receptor functions. Olfm1 caused the inhibition of NgR1 signaling by interfering with interaction between NgR1 and its coreceptors p75NTR or LINGO-1. In zebrafish, inhibition of optic nerve extension by olfm1 morpholino oligonucleotides was partially rescued by dominant negative ngr1 or lingo-1. These data introduce Olfm1 as a novel NgR1 ligand that may modulate the functions of the NgR1 complex in axonal growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号