首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
中枢神经系统损伤后其再生能力较弱已被人们所熟知,原因在于髓磷脂抑制物如Nogo、MAG、Omgp等抑制因子的作用,这些抑制因子通过与神经元上的Nogo受体(NgR)特异性结合,发挥对神经轴突再生的抑制作用。Nogo是一种存在于中枢神经系统少突胶质细胞上的髓磷脂蛋白,其作用主要在于神经细胞损伤后抑制其突触再生,这同时也是对损伤部位其他细胞免于进一步损伤的保护作用。存在于细胞表面的Nogo-66结构是与NgR特异性结合的功能域。NgR是一种存在于神经元表面,传递抑制轴突生长信号的复合共受体。近年来随着对NgR、Nogo及其下游信号通路其他相关蛋白研究的深入,提示多种神经系统疾病与之相关。我们简要综述近年来关于NgR的研究进展。  相似文献   

2.
中枢神经系统轴突再生抑制蛋白   总被引:1,自引:0,他引:1  
Hu JG  Lu PH  Xu XM 《生理科学进展》2004,35(4):311-315
中枢神经系统 (CNS)轴突再生的主要障碍之一是存在抑制再生的蛋白 ,迄今 ,已在少突胶质细胞 /髓鞘中相继发现至少三个重要的轴突再生抑制蛋白 ,即髓鞘相关糖蛋白 (MAG)、Nogo A和少突胶质细胞 /髓鞘糖蛋白 (OMgp)。最近的研究又证实 ,这三个不同的抑制成分可能主要通过与一个共同的受体Nogo6 6受体 (NgR)结合而发挥作用。这些研究成果扩充了对CNS损伤后轴突再生障碍的理解 ,也为探讨CNS损伤的治疗新策略提供了新的思路。  相似文献   

3.
Nogo与Nogo受体研究   总被引:2,自引:0,他引:2  
nogo是新近发现的一种基因,编码3种蛋白质:Nogo-A、Nogo-B和Nogo-C.迄今为止,已证明它有抑制成熟中枢神经系统(CNS)神经元轴突再生及诱导细胞凋亡的作用.Nogo受体是一种糖基醇磷脂结合蛋白.对Nogo和Nogo受体的研究,对于CNS再生障碍及肿瘤的认识和治疗有重要意义.  相似文献   

4.
成体哺乳动物中枢神经损伤后早期轴突再生失败的一个主要原因是由于髓磷脂抑制分子的存在。Nogo、髓磷脂相关糖蛋白以及少突胶质细胞髓磷脂糖蛋白等神经再生抑制因子的发现,大大促进了中枢神经再生分子机制的研究。它们均能独立通过Nogo-66受体产生对轴突再生的抑制效应,髓磷脂抑制分子及其信号转导机制的研究日益成为中枢神经再生的研究热点,髓磷脂及其信号转导分子特别是Nogo-66受体、p75神经营养素受体成为损伤后促进轴突再生、抑制生长锥塌陷的主要治疗靶点。抑制上述抑制因子及相关受体NgR或p75NTR可能有助于中枢神经损伤的修复,围绕这些抑制因子及其相关受体介导的信号转导途径,人们提出了多种治疗中枢神经损伤的新思路,其中免疫学方法尤其受到关注。  相似文献   

5.
脊髓损伤(spinal cord injury,SCI)往往导致患者下肢活动功能受限,甚至瘫痪,降低患者生活质量,且治愈率低。髓磷脂相关抑制因子(myelin associated inhibitors,MAIs)是抑制受损中枢神经系统(central nervous system,CNS)再生修复的一个重要因素。对MAIs及其信号通路的干扰能有效逆转CNS神经再生抑制信号,促进脊髓损伤后轴突的再生。MAIs抑制轴突再生信号通路的发现及其深入研究为损伤脊髓的免疫治疗提供了充分的理论依据和研究靶点。将对抑制神经再生信号通路中MAIs及其受体的生物学功能新进展以及以此为治疗靶点设计的脊髓损伤免疫治疗策略作一综述。  相似文献   

6.
神经轴突生长抑制因子Nogo—B在体分布广泛,提示其除了具有抑制中枢神经系统轴突再生作用外,可能还扮演其他重要的功能角色。该研究为探讨Nogo-B下游新的结合分子及其功能开展相应研究。通过设计诱饵蛋白筛选人脑cDNA文库、免疫共沉淀方法,寻找Nogo-B下游结合分子:通过流式细胞术,检测结合对于细胞凋亡的影响:通过绿色荧光蛋白标记和免疫组织化学方法,探讨Nogo-B诱导细胞凋亡的机制。结果提示,Clusterin除了与Nogo-66功能域在酵母双杂交系统中存在结合,与Nogo—B在哺乳细胞中也能发生结合。过表达Nogo-B可明显诱导HEK293细胞凋亡,与Clusterin共表达可下调早期细胞凋亡率,但后期Nogo—B可通过调节Clusterin由胞浆到胞核转位,进一步诱导细胞凋亡进程。该研究首次提出Nogo—B与Clusterin之间存在结合,且结合参与了Nogo-B诱导的细胞凋亡进程。  相似文献   

7.
神经突再生抑制因子Nogo研究进展   总被引:2,自引:0,他引:2  
Lu SH  Liu SJ 《生理科学进展》2003,34(3):241-244
髓磷脂所表达的Nogo蛋白可能是阻止中枢神经再生的关键因素。nogo基因的克隆成功是近年神经再生研究的一个重要进展。nogo基因至少编码三种蛋白质,分别称为Nogo-A、Nogo-B和Nogo-C。Nogo-A即以前所指的NI-250。Nogo-A的单克隆抗体IN-1,能中和Nogo对神经突起再生的抑制作用,促使受损的神经纤维再生,并使神经功能得到部分恢复。本文介绍Nogo的研究概况、生物学作用及其在中枢神经损伤修复方面可能的应用前景。  相似文献   

8.
神经轴突生长抑制因子Nogo 家族的研究进展*   总被引:1,自引:0,他引:1       下载免费PDF全文
Nogo家族是一类神经轴突生长抑制因子家族,目前成员包括Nogo-A,Nogo-B,Nogo-C三个亚型。Nogo家族成员因C末端具有保守的RHD结构域而归属于RTNs家族,表明它们的分布和功能与内质网密切相关。Nogo家族C末端还具有一个进化保守的66氨基酸的功能段称为Nogo-66,体外表达的Nogo-66片段具有抑制神经突生长的作用。Nogo家族成员结构上的区别主要表现在不同剪切长短的N末端序列。Nogo-A主要在中枢和外周神经系统中广泛分布,Nogo-C主要分布在骨骼肌,而Nogo-B则几乎遍布于各种组织与细胞之中。目前,发现可介导Nogo胞内信号转导通路的受体主要是膜外糖蛋白偶联的NgR和跨膜受体p75NTR组成的共受体,但NgR与Nogo-A在胚胎发育中时空表达并不同步提示可能还有其它受体存在。虽然Nogo家族作为神经轴突生长抑制因子被发现,但越来越多的研究表明其可能在胚胎发育、细胞凋亡或神经退行性变等重大事件中扮演重要角色。本文拟就Nogo家族迄今为止突出的研究进展作一综述,旨在为下一步的功能研究工作提供理论参考和依据。  相似文献   

9.
成年哺乳动物的中枢神经系统(CNS)受损后,解剖学上的修复水平非常有限。因神经纤维再生明显受阻,往往造成神经损伤后永久性的功能缺陷。在成年CNS抑制轴突生长的因子中,有一类是髓磷脂蛋白(myelin),而Nogo是这类蛋白中的一种,由少突神经胶质细胞产生,抑制轴突的生长。通过不同的启动子和差别剪接,nogo基因会产生三种主要的转录产物Nogo-A、-B和-C。  相似文献   

10.
Lingo-1(leucine-rich repeat and Ig domain containing,Nogo receptor-interacting protein1)是一种选择性表达于中枢神经系统的跨膜蛋白。目前,针对髓鞘再生过程的研究发现,在中枢神经系统损伤后出现高表达Lingo-1,从而抑制损伤区少突胶质前体细胞(oligodendrocyte progenitor cells,OPCs)的分化并降低神经元的存活率,最终抑制损伤神经元的髓鞘再生。由此提示,Lingo-1可能成为促进损伤后神经修复的重要新靶点。该文就近年来关于Lingo-1对中枢神经系统髓鞘再生影响的研究及其作用机制作一简单综述。  相似文献   

11.
The recent discovery of the Nogo family of myelin inhibitors and the Nogo-66 receptor opens up a very promising avenue for the development of therapeutic agents for treating spinal cord injury. Nogo-A, the largest member of the Nogo family, is a multidomain protein containing at least two regions responsible for inhibiting central nervous system (CNS) regeneration. So far, no structural information is available for Nogo-A or any of its structural domains. We have subcloned and expressed two Nogo-A fragments, namely the 182 residue Nogo-A(567-748) and the 66 residue Nogo-66 in Escherichia coli. CD and NMR characterization indicated that Nogo-A(567-748) was only partially structured while Nogo-66 was highly insoluble. Nogo-40, a truncated form of Nogo-66, has been previously shown to be a Nogo-66 receptor antagonist that is able to enhance CNS neuronal regeneration. Detailed NMR examinations revealed that a Nogo-40 peptide had intrinsic helix-forming propensity, even in an aqueous environment. The NMR structure of Nogo-40 was therefore determined in the presence of the helix-stabilizing solvent trifluoroethanol. The solution structure of Nogo-40 revealed two well-defined helices linked by an unstructured loop, representing the first structure of Nogo-66 receptor binding ligands. Our results provide the first structural insights into Nogo-A functional domains and may have implications in further designs of peptide mimetics that would enhance CNS neuronal regeneration.  相似文献   

12.
Nogo/reticulon (RTN)-4 has been strongly implicated as a disease marker for the motor neuron disease amyotrophic lateral sclerosis (ALS). Nogo isoforms, including Nogo-A, are ectopically expressed in the skeletal muscle of ALS mouse models and patients and their levels correlate with the disease severity. The notion of a direct involvement of Nogo-A in ALS aetiology is supported by the findings that Nogo-A deletion in mice reduces muscle denervation and prolongs survival, whereas overexpression of Nogo-A destabilizes motor nerve terminals and promotes denervation. Another intriguing, and somewhat paradoxical, recent finding revealed that binding of the Nogo-66 receptor (NgR) by either agonistic or antagonistic Nogo-66-derived peptides protects against p75 neurotrophin receptor (p75(NTR))-dependent motor neuron death. Ligand binding by NgR could result in subsequent engagement of p75(NTR), and this association could preclude pro-apoptotic signalling by the latter. Understanding the intricate interplay among Nogo isoforms, NgR and p75(NTR) in ALS disease progression may provide important, therapeutically exploitable information.  相似文献   

13.
Nogo-66, the extracellular 66 aa loop of the Nogo-A protein found in CNS myelin, interacts with the Nogo receptor and has been proposed to mediate inhibition of axonal regrowth. It has been shown that immunization with Nogo-A promotes recovery in animal models of spinal cord injury through induction of Ab production. In this report, studies were performed to characterize the immune response to Nogo-66 and to determine the role of Nogo in experimental autoimmune encephalomyelitis (EAE). Immunization of EAE-susceptible mouse strains with peptides derived from Nogo-66 induced a CNS immune response with clinical and pathological similarities to EAE. The Nogo-66 peptides elicited strong T cell responses that were not cross-reactive to other encephalitogenic myelin Ags. Using a large scale spotted microarray containing proteins and peptides derived from a wide spectrum of myelin components, we demonstrated that Nogo-66 peptides also generated a specific Ab response that spreads to several other encephalitogenic myelin Ags following immunization. Nogo-66-specific T cell lines ameliorated established EAE, via Nogo-66-specific Th2 cells that entered the CNS. These results indicate that some T cell and B cell immune responses to Nogo-66 are associated with suppression of ongoing EAE, whereas other Nogo-66 epitopes can be encephalitogenic.  相似文献   

14.
Zhang L  Kuang X  Zhang J 《遗传学报》2011,38(11):515-523
Nogo-A is a major myelin associated inhibitor that blocks regeneration of injured axons in the central nervous system (CNS).Nogo-66 (a 66-residue domain of Nogo-A) expressed on the surface of oligodendrocytes has been shown to directly interact with Nogo-66 receptor 1 (NgR1).A number of additional components of NgR1 receptor complex essential for its signaling have been uncovered.However,detailed composition of the complex and its signaling mechanisms remain to be fully elucidated.In this study,we show that Nogo receptor 3 (NgR3),a paralog of NgR1,is a binding protein for NgR1.The interaction is highly specific because other members of the reticulin family,to which Nogo-A belongs,do not bind to NgR3.Neither does NgR3 show any binding activity with Nogo receptor 2 (NgR2),another NgR1 paralog.Majority of NgR3 domains are required for its binding to NgR1.Moreover,a truncated NgR3 with the membrane anchoring domain deleted can function as a decoy receptor to reverse neurite outgrowth inhibition caused by Nogo-66 in culture.These in vitro results,together with previously reported overlapping expression profile between NgR1 and NgR3,suggest that NgR3 may be associated with NgR1 in vivo and that their binding interface may be targeted for treating neuronal injuries.  相似文献   

15.
Li M  Song J 《Proteins》2007,68(1):100-108
RTN4 or Nogo proteins are composed of three alternative splice forms, namely 1192-residue Nogo-A, 373-residue Nogo-B, and 199-residue Nogo-C. Nogo proteins have received intense attentions because they have been implicated in a variety of critical cellular processes including CNS neuronal regeneration, vascular remodeling, apoptosis, interaction with beta-amyloid protein converting enzyme, and generation/maintenance of the tubular network of the endoplasmic reticulum (ER). Despite their significantly-different N-terminal lengths, they share a conserved C-terminal reticulon-homology domain consisting of two transmembrane fragments, a 66-residue extracellular loop Nogo-66 and a 38-residue C-tail carrying ER retention motif. Nogo-A owns the largest N-terminus with 1016 residues while the Nogo-B has an N-terminus almost identical to the first 200 residues of Nogo-A. So far, except for our previous determination of the Nogo-66 solution structure, no structural characterization of the other Nogo regions has been reported. In the present study, we initiated a systematically investigation of structural properties of Nogo molecules by a combined use of bioinformatics, CD, and NMR spectroscopy. The results led to two striking findings: (1) in agreement with bioinformatics prediction, the N- and C-termini of Nogo-B were experimentally demonstrated to be intrinsically unstructured by CD, two-dimensional 1H 15N NMR HSQC, hydrogen exchange, and 15N heteronuclear NOE characterization. (2) Further studies showed that the 1016-residue N-terminus of Nogo-A was again highly disordered. Therefore, it appears that being intrinsically-unstructured allows Nogo molecules to serve as double-faceted functional players, with one set of functions involved in cellular signaling processes essential for CNS neuronal regeneration, vascular remodeling, apoptosis and so forth and with another in generating/maintaining membrane-related structures. We propose that this mechanism may represent a general strategy to place the formation/maintenance of membrane-related structures under the direct regulation of the cellular signaling.  相似文献   

16.
Nogo-66 receptor at cerebellar cortical glia gap junctions in the rat   总被引:5,自引:0,他引:5  
Liu X  Liu YY  Jin WL  Liu HL  Ju G 《Neuro-Signals》2005,14(3):96-101
Nogo-A is a myelin inhibitor of neurite outgrowth that accounts for the difficulty in fiber regeneration in the central nervous system. Its 66-amino-acid extracellular domain (Nogo-66) contributes to the inhibitory activity of Nogo-A. The Nogo-66 receptor is widely distributed in neurons of the central nervous system, including the cerebellum. In our study on the distribution of Nogo-66 receptor in the cerebellar cortex in the rat, we unexpectedly found Nogo-66 receptor immunoreactivity in the glia cells, particularly abundant beneath the Purkinje cells. The presence of Nogo-66 receptor in glia cells has not been reported before. A detailed study was thus conducted. Immunoelectron microscopic investigation clearly demonstrated that the Nogo-66 receptor immunoreactivity could be ascertained at the gap junction between glia cells, indicating that the Nogo-66 receptor may modulate the communication between glia cells through gap junctions.  相似文献   

17.
Upon spinal cord injury, the myelin inhibitors, including the myelin-associated glycoprotein (MAG), Nogo-A and the oligodendrocyte myelin glycoprotein (OMgp), bind to and signal via a single neuronal receptor/co-receptor complex comprising of Nogo receptor 1(NgR1)/LINGO-1 and p75 or TROY, impeding regeneration of injured axons. We employed a cell-free system to study the binding of NgR1 to its co-receptors and the myelin inhibitor Nogo-A, and show that gangliosides mediate the interaction of NgR1 with LINGO-1. Solid phase binding assays demonstrate that the sialic acid moieties of gangliosides and the stalk of NgR1 are the principal determinants of these molecular interactions. Moreover, the tripartite complex comprising of NgR1, LINGO-1 and ganglioside exhibits stronger binding to Nogo-A (Nogo-54) in the presence of p75, suggesting the gangliosides modulate the myelin inhibitor-receptor signaling.  相似文献   

18.
We report Nogo-A as an oligodendroglial component congregating and interacting with the Caspr-F3 complex at paranodes. However, its receptor Nogo-66 receptor (NgR) does not segregate to specific axonal domains. CHO cells cotransfected with Caspr and F3, but not with F3 alone, bound specifically to substrates coated with Nogo-66 peptide and GST-Nogo-66. Binding persisted even after phosphatidylinositol- specific phospholipase C (PI-PLC) removal of GPI-linked F3 from the cell surface, suggesting a direct interaction between Nogo-66 and Caspr. Both Nogo-A and Caspr co-immunoprecipitated with Kv1.1 and Kv1.2, and the developmental expression pattern of both paralleled compared with Kv1.1, implicating a transient interaction between Nogo-A-Caspr and K(+) channels at early stages of myelination. In pathological models that display paranodal junctional defects (EAE rats, and Shiverer and CGT(-/-) mice), distances between the paired labeling of K(+) channels were shortened significantly and their localization shifted toward paranodes, while paranodal Nogo-A congregation was markedly reduced. Our results demonstrate that Nogo-A interacts in trans with axonal Caspr at CNS paranodes, an interaction that may have a role in modulating axon-glial junction architecture and possibly K(+)-channel localization during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号