首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50601篇
  免费   4825篇
  国内免费   5547篇
  2024年   37篇
  2023年   664篇
  2022年   882篇
  2021年   2501篇
  2020年   1887篇
  2019年   2339篇
  2018年   2170篇
  2017年   1646篇
  2016年   2195篇
  2015年   3277篇
  2014年   3956篇
  2013年   4111篇
  2012年   5030篇
  2011年   4352篇
  2010年   2827篇
  2009年   2489篇
  2008年   2959篇
  2007年   2614篇
  2006年   2255篇
  2005年   1982篇
  2004年   1600篇
  2003年   1415篇
  2002年   1217篇
  2001年   922篇
  2000年   720篇
  1999年   776篇
  1998年   487篇
  1997年   403篇
  1996年   430篇
  1995年   356篇
  1994年   379篇
  1993年   243篇
  1992年   314篇
  1991年   269篇
  1990年   237篇
  1989年   174篇
  1988年   136篇
  1987年   109篇
  1986年   82篇
  1985年   107篇
  1984年   61篇
  1983年   54篇
  1982年   49篇
  1981年   34篇
  1980年   19篇
  1979年   27篇
  1977年   17篇
  1976年   17篇
  1973年   17篇
  1969年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Protein collective motions play a critical role in many biochemical processes. How to predict the functional motions and the related key residue interactions in proteins is important for our understanding in the mechanism of the biochemical processes. Normal mode analysis (NMA) of the elastic network model (ENM) is one of the effective approaches to investigate the structure-encoded motions in proteins. However, the motion modes revealed by the conventional NMA approach do not necessarily correspond to a specific function of protein. In the present work, a new analysis method was proposed to identify the motion modes responsible for a specific function of proteins and then predict the key residue interactions involved in the functional motions by using a perturbation approach. In our method, an internal coordinate that accounts for the specific function was introduced, and the Cartesian coordinate space was transformed into the internal/Cartesian space by using linear approximation, where the introduced internal coordinate serves as one of the axes of the coordinate space. NMA of ENM in this internal/Cartesian space was performed and the function-relevant motion modes were identified according to their contributions to the specific function of proteins. Then the key residue interactions important for the functional motions of the protein were predicted as the interactions whose perturbation largely influences the fluctuation along the internal coordinate. Using our proposed methods, the maltose transporter (MalFGK2) from E. Coli was studied. The functional motions and the key residue interactions that are related to the channel-gating function of this protein were successfully identified.  相似文献   
3.
4.
An experiment was conducted to investigate the effect of phytase transgenic corn (PTC) on intestinal microflora, and the fate of transgenic DNA and protein in the digesta and tissues of broilers. A total of 160 1-day-old Arbor Acres commercial male broilers were randomly assigned to 20 cages (8 chicks per cage) with 10 cages (replicates) for each treatment. Birds were fed with a diet containing either PTC (54.0% during 1–21 days and 61.0% during 22–42 days) or non-transgenic isogenic control corn (CC) for a duration of 42 days. There were no significant differences (P>0.05) between birds fed with the PTC diets and those fed with the CC diets in the quantities of aerobic bacteria, anaerobic bacteria, colibacillus and lactobacilli, or microbial diversities in the contents of ileum and cecum. Transgenic phyA2 DNA was not detected, but phyA2 protein was detected in the digesta of duodenum and jejunum of broilers fed with the PTC diets. Both transgenic phyA2 DNA and protein fragments were not found in the digesta of the ileum and rectum, heart, liver, kidney, and breast or thigh muscles of broilers fed with the PTC diets. It was concluded that PTC had no adverse effect on the quantity and diversity of gut microorganisms; Transgenic phyA2 DNA or protein was rapidly degraded in the intestinal tract and was not transferred to the tissues of broilers.  相似文献   
5.
The murine 2',5'-oligoadenylate synthetase ME-12 gene regulatory region AB forms six complexes with protein factors in murine BALB/c 3T3 cells as demonstrated by the mobility shift electrophoresis assay under the reaction conditions used. The complexes, designated C1-C6 in order of their decreasing electrophoretic mobility, showed three distinctive specificities with regulatory region AB, element A, and element B as probes or competing DNA: 1) C1 is region AB-specific (this complex did not form with either element A or B used alone or as a mixture); 2) C5 formed both with element A and element B; 3) C2, C3, C4, and C6 formed with element B, but not A. The protein factors that give rise to these complexes show differential DNA binding activities in various buffer solutions at different pH values. The C4-forming protein factor is the interferon (IFN)-alpha/beta-stimulated response factor (ISRF) which shows element B specificity. It preexists in the cytoplasm. ISRF appears to be complexed to an inhibitor (ISRFI) in the cytoplasm and to dissociate from the inhibitor and to translocate into the nucleus upon treatment of cells with IFN-alpha/beta. We propose that IFN-alpha/beta treatment of BALB/c 3T3 can trigger at least two events: 1) loosening of a tight inhibitor-ISRF complex with the release of free ISRF; this may be mediated via phosphorylation of ISRF or ISRFI; 2) translocation of ISRF into the nucleus and binding to the enhancer element B, which results in the activation of 2',5'-oligoadenylate synthetase gene expression.  相似文献   
6.
7.
8.
Cellulases are the key enzymes used in the biofuel industry. A typical cellulase contains a catalytic domain connected to a carbohydrate-binding module (CBM) through a flexible linker. Here we report the structure of an atypical trimodular cellulase which harbors a catalytic domain, a CBM46 domain and a rigid CBM_X domain between them. The catalytic domain shows the features of GH5 family, while the CBM46 domain has a sandwich-like structure. The catalytic domain and the CBM46 domain form an extended substrate binding cleft, within which several tryptophan residues are well exposed. Mutagenesis assays indicate that these residues are essential for the enzymatic activities. Gel affinity electrophoresis shows that these tryptophan residues are involved in the polysaccharide substrate binding. Also, electrostatic potential analysis indicates that almost the entire solvent accessible surface of CelB is negatively charged, which is consistent with the halophilic nature of this enzyme.  相似文献   
9.
Pseudorabies virus has a class 2 genome in which the S component is found in two orientations relative to the L component. The L component is bracketed by sequences that are partially homologous; it is found mainly in one orientation, but a small proportion is inverted (J. M. DeMarchi, Z. Lu, G. Rall, S. Kuperschmidt, and T. Ben-Porat, J. Virol. 64:4968-4977, 1990). We have ascertained the role of the patchy homologous sequences bracketing the L component in its inversion. A viral mutant, vYa, from which the sequences at the right end of the L component were deleted was constructed. Despite the absence of homologous sequences bracketing the L component in vYa, its L component inverted to an extent similar to that of the L component in the wild-type virus. These results show the following. (i) The low-frequency inversion of the L component of PrV is not mediated by homologous sequences bracketing this component. (ii) Cleavage of concatemeric DNA at the internal junction between the S and L components is responsible for the appearance of the minority of genomes with an inverted L component in populations of pseudorabies virus. (iii) The signals present near or at the end of the S component are sufficient to allow low-frequency cleavage of concatemeric DNA; the sequences at the end of the L component are not essential for cleavage, although they enhance it considerably.  相似文献   
10.
What determines the rate at which species adapt to new climatic conditions? Weaver et al. found that the evolution of short larval periods promotes climatic niche evolution in salamanders in the genus Desmognathus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号