首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of cardiac ATP-sensitive K(+) (K(ATP)) channels in ischemia-induced electrophysiological alterations has not been thoroughly established. Using mice with homozygous knockout (KO) of Kir6.2 (a pore-forming subunit of cardiac K(ATP) channel) gene, we investigated the potential contribution of K(ATP) channels to electrophysiological alterations and extracellular K(+) accumulation during myocardial ischemia. Coronary-perfused mouse left ventricular muscles were stimulated at 5 Hz and subjected to no-flow ischemia. Transmembrane potential and extracellular K(+) concentration ([K(+)](o)) were measured by using conventional and K(+)-selective microelectrodes, respectively. In wild-type (WT) hearts, action potential duration (APD) at 90% repolarization (APD(90)) was significantly decreased by 70.1 +/- 5.2% after 10 min of ischemia (n = 6, P < 0.05). Such ischemia-induced shortening of APD(90) did not occur in Kir6.2-deficient (Kir6.2 KO) hearts. Resting membrane potential in WT and Kir6.2 KO hearts similarly decreased by 16.8 +/- 5.6 (n = 7, P < 0.05) and 15.0 +/- 1.7 (n = 6, P < 0.05) mV, respectively. The [K(+)](o) in WT hearts increased within the first 5 min of ischemia by 6.9 +/- 2.5 mM (n = 6, P < 0.05) and then reached a plateau. However, the extracellular K(+) accumulation similarly occurred in Kir6.2 KO hearts and the degree of [K(+)](o) increase was comparable to that in WT hearts (by 7.0 +/- 1.7 mM, n = 6, P < 0.05). In Kir6.2 KO hearts, time-dependent slowing of conduction was more pronounced compared with WT hearts. In conclusion, the present study using Kir6.2 KO hearts provides evidence that the activation of K(ATP) channels contributes to the shortening of APD, whereas it is not the primary cause of extracellular K(+) accumulation during early myocardial ischemia.  相似文献   

2.
Gene knockout of the KCNJ11-encoded Kir6.2 ATP-sensitive K(+) (K(ATP)) channel implicates this stress-response element in the safeguard of cardiac homeostasis under imposed demand. K(ATP) channels are abundant in ventricular sarcolemma, where subunit expression appears to vary between the sexes. A limitation, however, in establishing the full significance of K(ATP) channels in the intact organism has been the inability to monitor in vivo the contribution of the channel to intracellular calcium handling and the superimposed effect of sex that ultimately defines heart function. Here, in vivo manganese-enhanced cardiac magnetic resonance imaging revealed, under dobutamine stress, a significantly greater accumulation of calcium in both male and female K(ATP) channel knockout (Kir6.2-KO) mice compared with sex- and age-matched wild-type (WT) counterparts, with greatest calcium load in Kir6.2-KO females. This translated, poststress, into a sustained contracture manifested by reduced end-diastolic volumes in K(ATP) channel-deficient mice. In response to ischemia-induced stunning, male and female Kir6.2-KO hearts demonstrated accelerated time to contracture and increased peak contracture compared with WT. The outcome on reperfusion, in both male and female Kir6.2-KO hearts, was a transient reduction in systolic performance, measured as rate-pressure product compared with WT, with protracted increase in left ventricular end-diastolic pressure, exaggerated in female knockout hearts, despite comparable leakage of creatine kinase across groups. Kir6.2-KO hearts were rescued from diastolic dysfunction by agents that target alternative pathways of calcium handling. Thus K(ATP) channel deficit confers a greater susceptibility to calcium overload in vivo, accentuated in female hearts, impairing contractile recovery under various conditions of high metabolic demand.  相似文献   

3.
The functional significance of ATP-sensitive K(+) (K(ATP)) channels is controversial. In the present study, transgenic mice expressing a mutant Kir6.2, with reduced ATP sensitivity, were used to examine the role of sarcolemmal K(ATP) in normal cardiac function and after an ischemic or metabolic challenge. We found left ventricular developed pressure (LVDP) was 15-20% higher in hearts from transgenics in the absence of cardiac hypertrophy. beta-Adrenergic stimulation caused a positive inotropic response from nontransgenic hearts that was not observed in transgenic hearts. Decreasing extracellular Ca(2+) decreased LVDP in hearts from nontransgenics but not in those from transgenics. These data suggest an increase in intracellular [Ca(2+)] in transgenic hearts. Additional studies have demonstrated hearts from nontransgenics and transgenics have a similar postischemic LVDP. However, ischemic preconditioning does not improve postischemic recovery in transgenics. Transgenic hearts also demonstrate a poor recovery after metabolic inhibition. These data are consistent with the hypothesis that sarcolemmal K(ATP) channels are required for development of normal myocardial function, and perturbations of K(ATP) channels lead to hearts that respond poorly to ischemic or metabolic challenges.  相似文献   

4.
Cardiac ATP-sensitive K(+) (K(ATP)) channels are proposed to contribute to cardio-protection and ischemic preconditioning. Although mRNAs for all subunits of K(ATP) channels (Kir6.0 and sulfonylurea receptors SURs) were detected in hearts, subcellular localization of their proteins and the subunit combination are not well elucidated. We address these questions in rat hearts, using anti-peptide antibodies raised against each subunit. By immunoblot analysis, all of the subunits were detected in microsomal fractions including sarcolemmal membranes, while they were not detected in mitochondrial fractions at all. Immunoprecipitation and sucrose gradient sedimentation of the digitonin-solubilized microsomes indicated that Kir6.2 exclusively assembled with SUR2A. The molecular mass of the Kir6.2-SUR2A complex estimated by sucrose sedimentation was 1150 kDa, significantly larger than the calculated value for (Kir6.2)(4)-(SUR2A)(4), suggesting a potential formation of micellar complex with digitonin but no indication of hybrid channel formation under the conditions. These findings provide additional information on the structural and functional relationships of cardiac K(ATP) channel proteins involving subcellular localization and roles for cardioprotection and ischemic preconditioning.  相似文献   

5.
We examined the role of the sarcolemmal and mitochondrial K(ATP) channels in a rat model of ischemic preconditioning (IPC). Infarct size was expressed as a percentage of the area at risk (IS/AAR). IPC significantly reduced infarct size (7 +/- 1%) versus control (56 +/- 1%). The sarcolemmal K(ATP) channel-selective antagonist HMR-1098 administered before IPC did not significantly attenuate cardioprotection. However, pretreatment with the mitochondrial K(ATP) channel-selective antagonist 5-hydroxydecanoic acid (5-HD) 5 min before IPC partially abolished cardioprotection (40 +/- 1%). Diazoxide (10 mg/kg iv) also reduced IS/AAR (36.2 +/- 4.8%), but this effect was abolished by 5-HD. As an index of mitochondrial bioenergetic function, the rate of ATP synthesis in the AAR was examined. Untreated animals synthesized ATP at 2.12 +/- 0.30 micromol x min(-1) x mg mitochondrial protein(-1). Rats subjected to ischemia-reperfusion synthesized ATP at 0.67 +/- 0.06 micromol x min(-1) x mg mitochondrial protein(-1). IPC significantly increased ATP synthesis to 1.86 +/- 0.23 micromol x min(-1) x mg mitochondrial protein(-1). However, when 5-HD was administered before IPC, the preservation of ATP synthesis was attenuated (1.18 +/- 0.15 micromol x min(-1) x mg mitochondrial protein(-1)). These data are consistent with the notion that inhibition of mitochondrial K(ATP) channels attenuates IPC by reducing IPC-induced protection of mitochondrial function.  相似文献   

6.
7.
We have proposed that pharmacological preconditioning, leading to PKC-epsilon activation, in hearts improves postischemic functional recovery through a decrease in actomyosin ATPase activity and subsequent ATP conservation. The purpose of the present study was to determine whether moderate PKC-independent decreases in actomyosin ATPase are sufficient to improve myocardial postischemic function. Rats were given propylthiouracil (PTU) for 8 days to induce a 25% increase in beta-myosin heavy chain with a 28% reduction in actomyosin ATPase activity. Recovery of postischemic left ventricular developed pressure (LVDP) was significantly higher in PTU-treated rat hearts subjected to 30 min of global ischemia than in control hearts: 57.9 +/- 6.2 vs. 32.6 +/- 5.1% of preischemic values. In addition, PTU-treated hearts exhibited a delayed onset of rigor contracture during ischemia and a higher global ATP content after ischemia. In the second part of our study, we demonstrated a lower maximal actomyosin ATPase and a higher global ATP content after ischemia in human troponin T (TnT) transgenic mouse hearts. In mouse hearts with and without a point mutation at F110I of human TnT, recovery of postischemic LVDP was 55.4 +/- 5.5 and 62.5 +/- 14.5% compared with 20.0 +/- 2.9% in nontransgenic mouse hearts after 35 min of global ischemia. These results are consistent with the hypothesis that moderate decreases in actomyosin ATPase activity result in net ATP conservation that is sufficient to improve postischemic contractile function.  相似文献   

8.
This report demonstrates that mice deficient in Flt-1 failed to establish ischemic preconditioning (PC)-mediated cardioprotection in isolated working buffer-perfused ischemic/reperfused (I/R) hearts compared to wild type (WT) subjected to the same PC protocol. WT and Flt-1+/- mice were divided into four groups: (1) WT I/R, (2) WT + PC, (3) Flt-1+/- I/R, and (4) Flt-1+/- + PC. Group 1 and 3 mice were subjected to 30 min of ischemia followed by 2 h of reperfusion and group 2 and 4 mice were subjected to four episodes of 4-min global ischemia followed by 6 min of reperfusion before ischemia/reperfusion. For both wild-type and Flt-1+/- mice, the postischemic functional recovery for the hearts was lower than the baseline, but the recovery for the knockout mice was less compared to the WT mice even in preconditioning. The myocardial infarction and apoptosis were higher in Flt-1+/- compared to wild-type I/R. Flt-1+/- KO mice demonstrated pronounced inhibition of the expression of iNOS, p-AKT & p-eNOS. Significant inhibition of STAT3 & CREB were also observed along with the inhibition of HO-1 mRNA. Results demonstrate that Flt-1+/- mouse hearts are more susceptible to ischemia/reperfusion injury and also document that preconditioning is not as effective as found in WT and therefore suggest the importance of VEGF/Flt-1 signaling in ischemic/reperfused myocardium.  相似文献   

9.
The role of A(1) adenosine receptors (A(1)AR) in ischemic preconditioning was investigated in isolated crystalloid-perfused wild-type and transgenic mouse hearts with increased A(1)AR. The effect of preconditioning on postischemic myocardial function, lactate dehydrogenase (LDH) release, and infarct size was examined. Functional recovery was greater in transgenic versus wild-type hearts (44.8 +/- 3.4% baseline vs. 25.6 +/- 1.7%). Preconditioning improved functional recovery in wild-type hearts from 25.6 +/- 1.7% to 37.4 +/- 2.2% but did not change recovery in transgenic hearts (44.8 +/- 3.4% vs. 44.5 +/- 3.9%). In isovolumically contracting hearts, pretreatment with selective A(1) receptor antagonist 1, 3-dipropyl-8-cyclopentylxanthine attenuated the improved functional recovery in both wild-type preconditioned (74.2 +/- 7.3% baseline rate of pressure development over time untreated vs. 29.7 +/- 7.3% treated) and transgenic hearts (84.1 +/- 12.8% untreated vs. 42.1 +/- 6.8% treated). Preconditioning wild-type hearts reduced LDH release (from 7,012 +/- 1,451 to 1,691 +/- 1,256 U. l(-1). g(-1). min(-1)) and infarct size (from 62.6 +/- 5.1% to 32.3 +/- 11.5%). Preconditioning did not affect LDH release or infarct size in hearts overexpressing A(1)AR. Compared with wild-type hearts, A(1)AR overexpression markedly reduced LDH release (from 7,012 +/- 1,451 to 917 +/- 1,123 U. l(-1). g(-1). min(-1)) and infarct size (from 62.6 +/- 5.1% to 6.5 +/- 2.1%). These data demonstrate that murine preconditioning involves endogenous activation of A(1)AR. The beneficial effects of preconditioning and A(1)AR overexpression are not additive. Taken with the observation that A(1)AR blockade equally eliminates the functional protection resulting from both preconditioning and transgenic A(1)AR overexpression, we conclude that the two interventions affect cardioprotection via common mechanisms or pathways.  相似文献   

10.
Mice with genetic inhibition (AC3-I) of the multifunctional Ca(2+)/calmodulin dependent protein kinase II (CaMKII) have improved cardiomyocyte survival after ischemia. Some K(+) currents are up-regulated in AC3-I hearts, but it is unknown if CaMKII inhibition increases the ATP sensitive K(+) current (I(KATP)) that underlies ischemic preconditioning (IP) and confers resistance to ischemia. We hypothesized increased I(KATP) was part of the mechanism for improved ventricular myocyte survival during ischemia in AC3-I mice. AC3-I hearts were protected against global ischemia due to enhanced IP compared to wild type (WT) and transgenic control (AC3-C) hearts. IKATP was significantly increased, while the negative regulatory dose-dependence of ATP was unchanged in AC3-I compared to WT and AC3-C ventricular myocytes, suggesting that CaMKII inhibition increased the number of functional I(KATP) channels available for IP. We measured increased sarcolemmal Kir6.2, a pore-forming I(KATP) subunit, but not a change in total Kir6.2 in cell lysates or single channel I(KATP) opening probability from AC3-I compared to WT and AC3-C ventricles, showing CaMKII inhibition increased sarcolemmal I(KATP) channel expression. There were no differences in mRNA for genes encoding I(KATP) channel subunits in AC3-I, WT and AC3-C ventricles. The I(KATP) opener pinacidil (100 microM) reduced MI area in WT to match AC3-I hearts, while the I(KATP) antagonist HMR1098 (30 microM) increased MI area to an equivalent level in all groups, indicating that increased I(KATP) and augmented IP are important for reduced ischemic cell death in AC3-I hearts. Our study results show CaMKII inhibition enhances beneficial effects of IP by increasing I(KATP).  相似文献   

11.
ATP-sensitive K(+) (K(ATP)) channels, composed of inward rectifier K(+) (Kir)6.x and sulfonylurea receptor (SUR)x subunits, are expressed on cellular plasma membranes. We demonstrate an essential role for SUR2 subunits in trafficking K(ATP) channels to an intracellular vesicular compartment. Transfection of Kir6.x/SUR2 subunits into a variety of cell lines (including h9c2 cardiac cells and human coronary artery smooth muscle cells) resulted in trafficking to endosomal/lysosomal compartments, as assessed by immunofluorescence microscopy. By contrast, SUR1/Kir6.x channels efficiently localized to the plasmalemma. The channel turnover rate was similar with SUR1 or SUR2, suggesting that the expression of Kir6/SUR2 proteins in lysosomes is not associated with increased degradation. Surface labeling of hemagglutinin-tagged channels demonstrated that SUR2-containing channels dynamically cycle between endosomal and plasmalemmal compartments. In addition, Kir6.2 and SUR2 subunits were found in both endosomal and sarcolemmal membrane fractions isolated from rat hearts. The balance of these K(ATP) channel subunits shifted to the sarcolemmal membrane fraction after the induction of ischemia. The K(ATP) channel current density was also increased in rat ventricular myocytes isolated from hearts rendered ischemic before cell isolation without corresponding changes in subunit mRNA expression. We conclude that an intracellular pool of SUR2-containing K(ATP) channels exists that is derived by endocytosis from the plasma membrane. In cardiac myocytes, this pool can potentially play a cardioprotective role by serving as a reservoir for modulating surface K(ATP) channel density under stress conditions, such as myocardial ischemia.  相似文献   

12.
Dichloroacetate (DCA) is a pyruvate dehydrogenase activator that increases cardiac efficiency during reperfusion of ischemic hearts. We determined whether DCA increases efficiency of mitochondrial ATP production by measuring proton leak in mitochondria from isolated working rat hearts subjected to 30 min of ischemia and 60 min of reperfusion. In untreated hearts, cardiac work and efficiency decreased during reperfusion to 26% and 40% of preischemic values, respectively. Membrane potential was significantly lower in mitochondria from reperfused (175.6 +/- 2.2 mV) versus aerobic (185.8 +/- 3.1 mV) hearts. DCA (1 mM added at reperfusion) improved recovery of cardiac work (1.9-fold) and efficiency (1.5-fold) but had no effect on mitochondrial membrane potential (170.6 +/- 2.9 mV). At the maximal attainable membrane potential, O(2) consumption (nmol O(2) x mg(-1) x min(-1)) did not differ between untreated or DCA-treated hearts (128.3 +/- 7.5 and 120.6 +/- 7.6, respectively) but was significantly greater than aerobic hearts (76.6 +/- 7.6). During reperfusion, DCA increased glucose oxidation 2.5-fold and decreased H(+) production from glucose metabolism to 53% of untreated hearts. Because H(+) production decreases cardiac efficiency, we suggest that DCA increases cardiac efficiency during reperfusion of ischemic hearts by increasing the efficiency of ATP use and not by increasing the efficiency of ATP production.  相似文献   

13.
Insulin resistance (IR) precedes the onset of Type 2 diabetes, but its impact on preconditioning against myocardial ischemia-reperfusion injury is unexplored. We examined the effects of diazoxide and ischemic preconditioning (IPC; 5-min ischemia and 5-min reperfusion) on ischemia (30 min)-reperfusion (240 min) injury in young IR Zucker obese (ZO) and lean (ZL) rats. ZO hearts developed larger infarcts than ZL hearts (infarct size: 57.3 +/- 3% in ZO vs. 39.2 +/- 3.2% in ZL; P < 0.05) and also failed to respond to cardioprotection by IPC or diazoxide (47.2 +/- 4.3% and 52.5 +/- 5.8%, respectively; P = not significant). In contrast, IPC and diazoxide treatment reduced the infarct size in ZL hearts (12.7 +/- 2% and 16.3 +/- 6.7%, respectively; P < 0.05). The mitochondrial ATP-activated potassium channel (K(ATP)) antagonist 5-hydroxydecanoic acid inhibited IPC and diazoxide-induced preconditioning in ZL hearts, whereas it had no effect on ZO hearts. Diazoxide elicited reduced depolarization of isolated mitochondria from ZO hearts compared with ZL (73 +/- 9% in ZL vs. 39 +/- 9% in ZO; P < 0.05). Diazoxide also failed to enhance superoxide generation in isolated mitochondria from ZO compared with ZL hearts. Electron micrographs of ZO hearts revealed a decreased number of mitochondria accompanied by swelling, disorganized cristae, and vacuolation. Immunoblots of mitochondrial protein showed a modest increase in manganese superoxide dismutase in ZO hearts. Thus obesity accompanied by IR is associated with the inability to precondition against ischemic cardiac injury, which is mediated by enhanced mitochondrial oxidative stress and impaired activation of mitochondrial K(ATP).  相似文献   

14.
We studied the role of mitochondrial ATP-sensitive K(+) (K(ATP)) channels in modifying functional responses to 20 min global ischemia and 30 min reperfusion in wild-type mouse hearts and in hearts with approximately 250-fold overexpression of functionally coupled A(1)-adenosine receptors (A(1)ARs). In wild-type hearts, time to onset of contracture (TOC) was 303 +/- 24 s, with a peak contracture of 89 +/- 5 mmHg. Diastolic pressure remained elevated at 52 +/- 6 mmHg after reperfusion, and developed pressure recovered to 40 +/- 6% of preischemia. A(1)AR overexpression markedly prolonged TOC to 517 +/- 84 s, reduced contracture to 64 +/- 6 mmHg, and improved recovery of diastolic (to 9 +/- 4 mmHg) and developed pressure (to 82 +/- 8%). 5-Hydroxydecanoate (5-HD; 100 microM), a mitochondrial K(ATP) blocker, did not alter ischemic contracture in wild-type hearts, but increased diastolic pressure to 69 +/- 8 mmHg and reduced developed pressure to 10 +/- 5% during reperfusion. In transgenic hearts, 5-HD reduced TOC to 348 +/- 18 s, increased postischemic contracture to 53 +/- 4 mmHg, and reduced recovery of developed pressure to 22 +/- 4%. In summary, these data are the first to demonstrate that endogenous activation of K(ATP) channels improves tolerance to ischemia-reperfusion in murine myocardium. This functional protection occurs without modification of ischemic contracture. The data also support a role for mitochondrial K(ATP) channel activation in the pronounced cardioprotection afforded by overexpression of myocardial A(1)ARs.  相似文献   

15.
The ATP-sensitive K(+) (K(ATP)) channels in both sarcolemmal (sarcK(ATP)) and mitochondrial inner membrane (mitoK(ATP)) are the critical mediators in cellular protection of ischemic preconditioning (IPC). Whereas cardiac sarcK(ATP) contains Kir6.2 and sulfonylurea receptor (SUR)2A, the molecular identity of mitoK(ATP) remains elusive. In the present study, we tested the hypothesis that protein kinase C (PKC) may promote import of Kir6.2-containing K(ATP) into mitochondria. Fluorescence imaging of isolated mitochondria from both rat adult cardiomyocytes and COS-7 cells expressing recombinant Kir6.2/SUR2A showed that Kir6.2-containing K(ATP) channels were localized in mitochondria and this mitochondrial localization was significantly increased by PKC activation with phorbol 12-myristate 13-acetate (PMA). Fluorescence resonance energy transfer microscopy further revealed that a significant number of Kir6.2-containing K(ATP) channels were localized in mitochondrial inner membrane after PKC activation. These results were supported by Western blotting showing that the Kir6.2 protein level in mitochondria from COS-7 cells transfected with Kir6.2/SUR2A was enhanced after PMA treatment and this increase was inhibited by the selective PKC inhibitor chelerythrine. Furthermore, functional analysis indicated that the number of functional K(ATP) channels in mitochondria was significantly increased by PMA, as shown by K(ATP)-dependent decrease in mitochondrial membrane potential in COS-7 cells transfected with Kir6.2/SUR2A but not empty vector. Importantly, PKC-mediated increase in mitochondrial Kir6.2-containing K(ATP) channels was blocked by a selective PKCepsilon inhibitor peptide in both COS-7 cells and cardiomyocytes. We conclude that the K(ATP) channel pore-forming subunit Kir6.2 is indeed localized in mitochondria and that the Kir6.2 content in mitochondria is increased by activation of PKCepsilon. PKC isoform-regulated mitochondrial import of K(ATP) channels may have significant implication in cardioprotection of IPC.  相似文献   

16.
To determine whether sarcolemmal and/or mitochondrial ATP-sensitive potassium (K(ATP)) channels (sarcK(ATP), mitoK(ATP)) are involved in stretch-induced protection, isolated isovolumic rat hearts were assigned to the following protocols: nonstretched hearts were subjected to 20 min of global ischemia (Is) and 30 min of reperfusion, and before Is stretched hearts received 5 min of stretch + 10 min of no intervention. Stretch was induced by a transient increase in left ventricular end-diastolic pressure (LVEDP) from 10 to 40 mmHg. Other hearts received 5-hydroxydecanoate (5-HD; 100 microM), a selective inhibitor of mitoK(ATP), or HMR-1098 (20 microM), a selective inhibitor of sarcK(ATP), before the stretch protocol. Systolic function was assessed through left ventricular developed pressure (LVDP) and maximal rise in velocity of left ventricular pressure (+dP/dt(max)) and diastolic function through maximal decrease in velocity of left ventricular pressure (-dP/dt(max)) and LVEDP. Lactate dehydrogenase (LDH) release and ATP content were also measured. Stretch resulted in a significant increase of postischemic recovery and attenuation of diastolic stiffness. At 30 min of reperfusion LVDP and +dP/dt(max) were 87 +/- 4% and 92 +/- 6% and -dP/dt(max) and LVEDP were 95 +/- 9% and 10 +/- 4 mmHg vs. 57 +/- 6%, 53 +/- 6%, 57 +/- 10%, and 28 +/- 5 mmHg, respectively, in nonstretched hearts. Stretch increased ATP content and did not produce LDH release. 5-HD did not modify and HMR-1098 prevented the protection achieved by stretch. Our results show that the beneficial effects of stretch on postischemic myocardial dysfunction, cellular damage, and energetic state involve the participation of sarcK(ATP) but not mitoK(ATP).  相似文献   

17.
The abundantly expressed small molecular weight proteins, CRYAB and HSPB2, have been implicated in cardioprotection ex vivo. However, the biological roles of CRYAB/HSPB2 coexpression for either ischemic preconditioning and/or protection in situ remain poorly defined. Wild-type (WT) and age-matched ( approximately 5-9 mo) CRYAB/HSPB2 double knockout (DKO) mice were subjected either to 30 min of coronary occlusion and 24 h of reperfusion in situ or preconditioned with a 4-min coronary occlusion/4-min reperfusion x 6, before similar ischemic challenge (ischemic preconditioning). Additionally, WT and DKO mice were subjected to 30 min of global ischemia in isolated hearts ex vivo. All experimental groups were assessed for area at risk and infarct size. Mitochondrial respiration was analyzed in isolated permeabilized cardiac skinned fibers. As a result, DKO mice modestly altered heat shock protein expression. Surprisingly, infarct size in situ was reduced by 35% in hearts of DKO compared with WT mice (38.8 +/- 17.9 vs. 59.8 +/- 10.6% area at risk, P < 0.05). In DKO mice, ischemic preconditioning was additive to its infarct-sparing phenotype. Similarly, infarct size after ischemia and reperfusion ex vivo was decreased and the production of superoxide and creatine kinase release was decreased in DKO compared with WT mice (P < 0.05). In permeabilized fibers, ADP-stimulated respiration rates were modestly reduced and calcium-dependent ATP synthesis was abrogated in DKO compared with WT mice. In conclusion, contrary to expectation, our findings demonstrate that CRYAB and HSPB2 deficiency induces profound adaptations that are related to 1) a reduction in calcium-dependent metabolism/respiration, including ATP production, and 2) decreased superoxide production during reperfusion. We discuss the implications of these disparate results in the context of phenotypic responses reported for CRYAB/HSPB2-deficient mice to different ischemic challenges.  相似文献   

18.
We investigated whether the cardioprotection induced by heat stress (HS) pretreatment is associated with mitigation of phospholipid degradation during the ischemic and/or postischemic period. The hearts, isolated from control rats and from heat-pretreated rats (42 degrees C for 15 min) either 30 min (HS0.5-h) or 24 h (HS24-h) earlier, were subjected to 45 min of no-flow ischemia, followed by 45 min of reperfusion. Unesterified arachidonic acid (AA) accumulation was taken as a measure for phospholipid degradation. Significantly improved postischemic ventricular functional recovery was only found in the HS24-h group. During ischemia, AA accumulated comparably in control and both HS groups. During reperfusion in control and HS0.5-h hearts, AA further accumulated (control hearts from 82 +/- 33 to 109 +/- 51 nmol/g dry wt, not significant; HS-0.5h hearts from 52 +/- 22 to 120 +/- 53 nmol/g dry wt; P < 0.05). In contrast, AA was lower at the end of the reperfusion phase in HS24-h hearts than at the end of the preceding ischemic period (74 +/- 18 vs. 46 +/- 23 nmol/g dry wt; P < 0.05). Thus accelerated reperfusion-induced degradation of phospholipids in control hearts is completely absent in HS24-h hearts. Furthermore, the lack of functional improvement in HS0.5-h hearts is also associated with a lack of beneficial effect on lipid homeostasis. Therefore, it is proposed that enhanced membrane stability during reperfusion is a key mediator in the heat-induced cardioprotection.  相似文献   

19.
We tested whether mitochondrial or sarcolemmal ATP-sensitive K(+) (K(ATP)) channels play a key role in ischemic preconditioning (IP) in canine hearts. In open-chest beagle dogs, the left anterior descending artery was occluded four times for 5 min each with 5-min intervals of reperfusion (IP), occluded for 90 min, and reperfused for 6 h. IP as well as cromakalim and nicorandil (nonspecific K(ATP) channel openers) markedly limited infarct size (6.3 +/- 1.2, 8.9 +/- 1.9, and 7.2 +/- 1.6%, respectively) compared with the control group (40.9 +/- 4.1%). A selective mitochondrial K(ATP) channel blocker, 5-hydroxydecanoate, partially blunted the limitation of infarct size in the animals subjected to IP and those treated with cromakalim and nicorandil (21.6 +/- 3.8, 25.1 +/- 4.6, and 19.8 +/- 5.2%, respectively). A nonspecific K(ATP) channel blocker, glibenclamide, completely abolished the effect of IP (38.5 +/- 6.2%). Intracoronary or intravenous administration of a mitochondria-selective K(ATP) channel opener, diazoxide, at >100 micromol/l could only partially decrease infarct size (19.5 +/- 4.3 and 20.1 +/- 4.4%, respectively). In conclusion, mitochondrial and sarcolemmal K(ATP) channels independently play an important role in the limitation of infarct size by IP in the canine heart.  相似文献   

20.
The intracellular creatine concentration is an important bioenergetic parameter in cardiac muscle. Although creatine uptake is known to be via a NaCl-dependent creatine transporter (CrT), its localization and regulation are poorly understood. We investigated CrT kinetics in isolated perfused hearts and, by using cardiomyocytes, measured CrT content at the plasma membrane or in total lysates. Rats were fed control diet or diet supplemented with creatine or the creatine analog beta-guanidinopropionic acid (beta-GPA). Creatine transport in control hearts followed saturation kinetics with a K(m) of 70 +/- 13 mM and a V(max) of 3.7 +/- 0.07 nmol x min(-1) x g wet wt(-1). Creatine supplementation significantly decreased the V(max) of the CrT (2.7 +/- 0.17 nmol x min(-1) x g wet wt(-1)). This was matched by an approximately 35% decrease in the plasma membrane CrT; the total CrT pool was unchanged. Rats fed beta-GPA exhibited a >80% decrease in tissue creatine and increase in beta-GPA(total). The V(max) of the CrT was increased (6.0 +/- 0.25 nmol x min(-1) x g wet wt(-1)) and the K(m) decreased (39.8 +/- 3.0 mM). The plasma membrane CrT increased about fivefold, whereas the total CrT pool remained unchanged. We conclude that, in heart, creatine transport is determined by the content of a plasma membrane isoform of the CrT but not by the total cellular CrT pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号