首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
Human bone marrow-derived mesenchymal stromal cells (hMSCs) have the capacity to differentiate into several cell types including osteoblasts and are therefore an important cell source for bone tissue regeneration. A crucial issue is to identify mechanisms that trigger hMSC osteoblast differentiation to promote osteogenic potential. Casitas B lineage lymphoma (Cbl) is an E3 ubiquitin ligase that ubiquitinates and targets several molecules for degradation. We hypothesized that attenuation of Cbl-mediated degradation of receptor tyrosine kinases (RTKs) may promote osteogenic differentiation in hMSCs. We show here that specific inhibition of Cbl interaction with RTKs using a Cbl mutant (G306E) promotes expression of osteoblast markers (Runx2, alkaline phosphatase, type 1 collagen, osteocalcin) and increases osteogenic differentiation in clonal bone marrow-derived hMSCs and primary hMSCs. Analysis of molecular mechanisms revealed that the Cbl mutant increased PDGF receptor α and FGF receptor 2 but not EGF receptor expression in hMSCs, resulting in increased ERK1/2 and PI3K signaling. Pharmacological inhibition of FGFR or PDGFR abrogated in vitro osteogenesis induced by the Cbl mutant. The data reveal that specific inhibition of Cbl interaction with RTKs promotes the osteogenic differentiation program in hMSCs in part by decreased Cbl-mediated PDGFRα and FGFR2 ubiquitination, providing a novel mechanistic approach targeting Cbl to promote the osteogenic capacity of hMSCs.  相似文献   

3.
Fibroblast growth factor-2 (FGF2) is a powerful promoter of bone growth. We demonstrate here that brief exposure to FGF2 enhances mineralized nodule formation in cultured rat osteoprogenitor cells due to an expansion of cells that subsequently mineralize. This mitogenic effect is mediated via sulfated glycosaminoglycans (GAGs), FGFR1, and the extracellular signal-regulated kinase (ERK) pathway. The GAGs involved in this stimulation are chondroitin sulfates (CS) rather than heparan sulfates (HS). However, continuous FGF2 treatment reduces alkaline phosphatase (ALP) activity, downregulates collagen Ialpha1 (ColIalpha1) and FGFR3 expression, upregulates the expression and secretion of osteopontin (OPN) and inhibits mineralization. The inhibitory effects of FGF2 on FGFR3 expression and ALP activity are also mediated by the ERK pathway, although the effects of FGF2 on ColIalpha1 and OPN expression are mediated by GAGs and PKC activity. Thus short-term activation of FGF2/FGFR1 promotes osteoprogenitor proliferation and subsequent differentiation, while long-term activation of FGF2 signaling disrupts mineralization by modulating osteogenic marker expression. This study thus establishes the central role of sulfated GAGs in the osteogenic progression of osteoprogenitors.  相似文献   

4.
5.
The mitogen-activated protein kinase (MAP kinase) signalling cascade activated by fibroblast growth factors (FGF1 and FGF2) was analysed in a model system, Xenopus oocytes, expressing fibroblast growth factor receptors (FGFR1 and FGFR4). Stimulation of FGFR1 by FGF1 or FGF2 and FGFR4 by FGF1 induced a sustained phosphorylation of extracellular signal-regulated protein kinase 2 (ERK2) and meiosis reinitiation. In contrast, FGFR4 stimulation by FGF2 induced an early transient activation of ERK2 and no meiosis reinitiation. FGFR4 transduction cascades were differently activated by FGF1 and FGF2. Early phosphorylation of ERK2 was blocked by the dominant negative form of growth factor-bound protein 2 (Grb2) and Ras, for FGF1-FGFR4 and FGF2-FGFR4. The phosphatidylinositol 3-kinase (PI3 kinase) inhibitors wortmannin and LY294002 only prevented the early ERK2 phosphorylation triggered by FGF2-FGFR4 but not by FGF1-FGFR4. ERK2 phosphorylation triggered by FGFR4 depended on the Grb2/Ras pathway and also involved PI3 kinase in a time-dependent manner.  相似文献   

6.
Fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) play essential roles in bone formation and osteoblast activity through the extracellular signal‐regulated kinase 1/2 (ERK1/2) and Smad pathways. Sprouty family members are intracellular inhibitors of the FGF signaling pathway, and four orthologs of Sprouty have been identified in mammals. In vivo analyses have revealed that Sprouty2 is associated with bone formation. However, the mechanism by which the Sprouty family controls bone formation has not been clarified. In this study, we investigated the involvement of Sprouty2 in osteoblast proliferation and differentiation. We examined Sprouty2 expression in MC3T3‐E1 cells, and found that high levels of Sprouty2 expression were induced by basic FGF stimulation. Overexpression of Sprouty2 in MC3T3‐E1 cells resulted in suppressed proliferation compared with control cells. Sprouty2 negatively regulated the phosphorylation of ERK1/2 after basic FGF stimulation, and of Smad1/5/8 after BMP stimulation. Furthermore, Sprouty2 suppressed the expression of osterix, alkaline phosphatase, and osteocalcin mRNA, which are markers of osteoblast differentiation. Additionally, Sprouty2 inhibited osteoblast matrix mineralization. These results suggest that Sprouty2 is involved in the control of osteoblast proliferation and differentiation by downregulating the FGF‐ERK1/2 and BMP‐Smad pathways, and suppresses the induction of markers of osteoblast differentiation.  相似文献   

7.
Bone tissue homeostasis relies upon the ability of cells to detect and interpret extracellular signals that direct changes in tissue architecture. This study utilized a four-point bending model to create both fluid shear and strain forces (loading) during the time-dependent progression of MC3T3-E1 preosteoblasts along the osteogenic lineage. Loading was shown to increase cell number, alkaline phosphatase (ALP) activity, collagen synthesis, and the mRNA expression levels of Runx2, osteocalcin (OC), osteopontin, and cyclo-oxygenase-2. However, mineralization in these cultures was inhibited, despite an increase in calcium accumulation, suggesting that loading may inhibit mineralization in order to increase matrix deposition. Loading also increased fibroblast growth factor receptor-3 (FGFR3) expression coincident with an inhibition of FGFR1, FGFR4, FGF1, and extracellular signal-related kinase (ERK)1/2 phosphorylation. To examine whether these loading-induced changes in cell phenotype and FGFR expression could be attributed to the inhibition of ERK1/2 phosphorylation, cells were grown for 25 days in the presence of the MEK1/2 inhibitor, U0126. Significant increases in the expression of FGFR3, ALP, and OC were observed, as well as the inhibition of FGFR1, FGFR4, and FGF1. However, U0126 also increased matrix mineralization, demonstrating that inhibition of ERK1/2 phosphorylation cannot fully account for the changes observed in response to loading. In conclusion, this study demonstrates that preosteoblasts are mechanoresponsive, and that long-term loading, whilst increasing proliferation and differentiation of preosteoblasts, inhibits matrix mineralization. In addition, the increase in FGFR3 expression suggests that it may have a role in osteoblast differentiation.  相似文献   

8.
9.
10.
11.
Zheng Q  Huang G  Yang J  Xu Y  Guo C  Xi Y  Pan Z  Wang J 《Biological chemistry》2007,388(7):755-763
Microgravity (MG) results in a reduction in bone formation. Bone formation involves osteogenic differentiation from mesenchymal stem cells (hMSCs) in bone marrow. We modeled MG to determine its effects on osteogenesis of hMSCs and used activators or inhibitors of signaling factors to regulate osteogenic differentiation. Under osteogenic induction, MG reduced osteogenic differentiation of hMSCs and decreased the expression of osteoblast gene markers. The expression of Runx2 was also inhibited, whereas the expression of PPARgamma2 increased. MG also decreased phosphorylation of ERK, but increased phosphorylation of p38MAPK. SB203580, a p38MAPK inhibitor, was able to inhibit the phosphorylation of p38MAPK, but did not reduce the expression of PPARgamma2. Bone morphogenetic protein (BMP) increased the expression of Runx2. Fibroblast growth factor 2 (FGF2) increased the phosphorylation of ERK, but did not significantly increase the expression of osteoblast gene markers. The combination of BMP, FGF2 and SB203580 significantly reversed the effect of MG on osteogenic differentiation of hMSCs. Our results suggest that modeled MG inhibits the osteogenic differentiation and increases the adipogenic differentiation of hMSCs through different signaling pathways. Therefore, the effect of MG on the differentiation of hMSCs could be reversed by the mediation of signaling pathways.  相似文献   

12.
The FGF signaling pathway plays essential roles in endochondral ossification by regulating osteoblast proliferation and differentiation, chondrocyte proliferation, hypertrophy, and apoptosis. FGF signaling is controlled by the complementary action of both positive and negative regulators of the signal transduction pathway. The Spry proteins are crucial regulators of receptor tyrosine kinase-mediated MAPK signaling activity. Sprys are expressed in close proximity to FGF signaling centers and regulate FGFR-ERK-mediated organogenesis. During endochondral ossification, Spry genes are expressed in prehypertrophic and hypertrophic chondrocytes. Using a conditional transgenic approach in chondrocytes in vivo, the forced expression of Spry1 resulted in neonatal lethality with accompanying skeletal abnormalities resembling thanatophoric dysplasia II, including increased apoptosis and decreased chondrocyte proliferation in the presumptive reserve and proliferating zones. In vitro chondrocyte cultures recapitulated the inhibitory effect of Spry1 on chondrocyte proliferation. In addition, overexpression of Spry1 resulted in sustained ERK activation and increased expression of p21 and STAT1. Immunoprecipitation experiments revealed that Spry1 expression in chondrocyte cultures resulted in decreased FGFR2 ubiquitination and increased FGFR2 stability. These results suggest that constitutive expression of Spry1 in chondrocytes results in attenuated FGFR2 degradation, sustained ERK activation, and up-regulation of p21Cip and STAT1 causing dysregulated chondrocyte proliferation and terminal differentiation.  相似文献   

13.
14.
15.
E11/podoplanin is critical in the early stages of osteoblast‐to‐osteocyte transitions (osteocytogenesis), however, the upstream events which regulate E11 expression are unknown. The aim of this study was to examine the effects of FGF‐2 on E11‐mediated osteocytogenesis and to reveal the nature of the underlying signaling pathways regulating this process. Exposure of MC3T3 osteoblast‐like cells and murine primary osteoblasts to FGF‐2 (10 ng/ml) increased E11 mRNA and protein expression (p < 0.05) after 4, 6, and 24 hr. FGF‐2 induced changes in E11 expression were also accompanied by significant (p < 0.01) increases in Phex and Dmp1 (osteocyte markers) expression and decreases in Col1a1, Postn, Bglap, and Alpl (osteoblast markers) expression. Immunofluorescent microscopy revealed that FGF‐2 stimulated E11 expression, facilitated the translocation of E11 toward the cell membrane, and subsequently promoted the formation of osteocyte‐like dendrites in MC3T3 and primary osteoblasts. siRNA knock down of E11 expression achieved >70% reduction of basal E11 mRNA expression (p < 0.05) and effectively abrogated FGF‐2‐related changes in E11 expression and dendrite formation. FGF‐2 strongly activated the ERK signaling pathway in osteoblast‐like cells but inhibition of this pathway did not block the ability of FGF‐2 to enhance E11 expression or to promote acquisition of the osteocyte phenotype. The results of this study highlight a novel mechanism by which FGF‐2 can regulate osteoblast differentiation and osteocyte formation. Specifically, the data suggests that FGF‐2 promotes osteocytogenesis through increased E11 expression and further studies will identify if this regulatory pathway is essential for bone development and maintenance in health and disease.  相似文献   

16.
Fibroblast growth factor (FGF) receptor 1 (FGFR1) protein was expressed as the long and short as well as some truncated forms in ovine fetoplacental artery ex vivo and in vitro. Upon FGF2 stimulation, both the long and short FGFR1s were tyrosine phosphorylated and the PI3K/AKT1 and ERK1/2 pathways were activated in a concentration- and time- dependent manner in ovine fetoplacental artery endothelial (oFPAE) cells. Blockade of the PI3K/AKT1 pathway attenuated FGF2-stimulated cell proliferation and migration as well as tube formation; blockade of the ERK1/2 pathway abolished FGF2-stimulated tube formation and partially inhibited cell proliferation and did not alter cell migration. Both AKT1 and ERK1/2 were co-fractionated with caveolin-1 and activated by FGF2 in the caveolae. Disruption of caveolae by methyl-β-cyclodextrin inhibited FGF2 activation of AKT1 and ERK1/2. FGFR1 was found in the caveolae where it physically binds to caveolin-1. FGF2 stimulated dissociation of FGFR1 from caveolin-1. Downregulation of caveolin-1 significantly attenuated the FGF2-induced activation of AKT1 and ERK1/2 and inhibited FGF2-induced cell proliferation, migration and tube formation in oFPAE cells. Pretreatment with a caveolin-1 scaffolding domain peptide to mimic caveolin-1 overexpression also inhibited these FGF2-induced angiogenic responses. These data demonstrate that caveolae function as a platform for regulating FGF2-induced angiogenesis through spatiotemporally compartmentalizing FGFR1 and the AKT1 and ERK1/2 signaling modules; the major caveolar structural protein caveolin-1 interacts with FGFR1 and paradoxically regulates FGF2-induced activation of PI3K/AKT1 and ERK1/2 pathways that coordinately regulate placental angiogenesis.  相似文献   

17.
18.
The relationships between eosinophils and adipose tissues are involved in metabolic homeostasis. Eotaxin is a chemokine with potent effects on eosinophil migration. To clarify the mechanisms of eotaxin expression in adipose tissues, we examined the effects of fibroblast growth factor‐2 (FGF‐2) and interleukin‐4 (IL‐4) stimulation on eotaxin expression in adipose tissue‐derived stromal cells (ASCs), a type of adipocyte progenitor, in vitro. ASCs expressed eotaxin‐1 and did not express eotaxin‐2 or ‐3. Eotaxin‐1 expression was increased in a concentration‐dependent manner following FGF‐2 treatment. Additionally, ASCs expressed FGF receptor‐1 (FGFR‐1) and did not express FGFR‐2, ‐3, or ‐4. Eotaxin‐1 expression was inhibited in cells treated with the FGFR tyrosine kinase inhibitor and extracellular signal‐regulated kinase (ERK) inhibitor U0126, even in the presence of FGF‐2. Moreover, eotaxin‐1 expression was synergistically enhanced by combined treatment with FGF‐2 and IL‐4 and inhibited in the presence of U0126. Eotaxin‐1 expression induced by FGF‐2 and IL‐4 was involved in ERK activation via FGFR‐1 in ASCs. Upregulation of eotaxin expression in adipose tissues could increase eosinophil migration, thereby inducing IL‐4 secretion and activation of alternative macrophages and improving glucose homeostasis. These findings provide insights into the mechanisms through which eotaxin mediates metabolic homeostasis in adipose tissues and eosinophils.  相似文献   

19.
Fibroblast growth factors (FGFs) play an important regulatory role in skeletal development and bone formation. However, the FGF signaling mechanisms controlling osteoblast function are poorly understood. Here, we identified a role for the Src family members Lyn and Fyn in osteoblast differentiation promoted by constitutive activation of FGF receptor-2 (FGFR2). We show that the overactive FGFR2 S252W mutation induced decreased Src family kinase tyrosine phosphorylation and activity associated with decreased Lyn and Fyn protein expression in human osteoblasts. Pharmacological stimulation of Src family kinases or transfection with Lyn or Fyn vectors repressed alkaline phosphatase (ALP) up-regulation induced by overactive FGFR2. Inhibition of proteasome activity restored normal Lyn and Fyn expression and ALP activity in FGFR2 mutant osteoblasts. Immunoprecipitation studies showed that Lyn, Fyn, and FGFR2 interacted with the ubiquitin ligase c-Cbl and ubiquitin. Transfection with c-Cbl in which the RING finger was disrupted or with c-Cbl with a point mutation that abolishes the binding ability of the Cbl phosphotyrosine-binding domain restored Src kinase activity and Lyn, Fyn, and FGFR2 levels and reduced ALP up-regulation in mutant osteoblasts. Thus, constitutive FGFR2 activation induces c-Cbl-dependent Lyn and Fyn proteasome degradation, resulting in reduced Lyn and Fyn kinase activity, increased ALP expression, and FGFR2 down-regulation. This reveals a common Cbl-mediated negative feedback mechanism controlling Lyn, Fyn, and FGFR2 degradation in response to overactive FGFR2 and indicates a role for Cbl-dependent down-regulation of Lyn and Fyn in osteoblast differentiation induced by constitutive FGFR2 activation.  相似文献   

20.
Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone produced by bone and exerts its function in the target organs by binding the FGF receptor (FGFR) and Klotho. Since recent studies suggested that extracellular inorganic phosphate (Pi) itself triggers signal transduction and regulates gene expression in some cell types, we tested the notion that extracellular Pi induces signal transduction in the target cells of FGF23 also and influences its signaling, utilizing a human embryonic kidney cell line HEK293. HEK293 cells expressed low levels of klotho, and treatment with a recombinant FGF23[R179Q], a proteolysis‐resistant mutant of FGF23, resulted in phosphorylation of ERK1/2 and induction of early growth response‐1 (EGR1) expression. Interestingly, increased extracellular Pi resulted in activation of the Raf/MEK/ERK pathway and expression of EGR1, which involved type III sodium/phosphate (Na+/Pi) cotransporter PiT‐1. Since the effects of an inhibitor of Na+/Pi cotransporter on FGF23 signaling suggested that the signaling triggered by increased extracellular Pi shares the same downstream cascade as FGF23 signaling, we further investigated their convergence point. Increasing the extracellular Pi concentration resulted in the phosphorylation of FGF receptor substrate 2α (FRS2α), as did treatment with FGF23. Knockdown of FGFR1 expression diminished the phosphorylation of both FRS2α and ERK1/2 induced by the Pi. Moreover, overexpression of FGFR1 rescued the decrease in Pi‐induced phosphorylation of ERK1/2 in the cells where the expression of PiT‐1 was knocked down. These results suggest that increased extracellular Pi triggers signal transduction via PiT‐1 and FGFR and influences FGF23 signaling in HEK293 cells. J. Cell. Biochem. 111: 1210–1221, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号