首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Connexin39 (Cx39) and connexin43 (Cx43) are known to be expressed during development of skeletal muscles. Here we have compared the expression pattern of both connexins during differentiation of established C(2)C(12) mouse myoblasts and in the mouse embryo. Cx43 is highly abundant in undifferentiated myoblasts, but no Cx39 protein was detected in these cells. Upon differentiation into myotubes, Cx39 expression increased. The consecutive expression of these connexins was also observed in the mouse embryo. Cx39 and Cx43 were found in different plaques in accordance with the notion that Cx43 is exclusively expressed in myoblasts and Cx39 in myotubes. Thus, differentiating C(2)C(12) cells in culture can serve to study the involvement of gap junctions in myogenesis, since expression of corresponding Cx39 and Cx43 proteins appears to be very similar as in the mouse embryo.  相似文献   

2.
Gene ablation studies in mice have revealed roles for gap junction proteins (connexins) in heart development. Of the 20 connexins in vertebrates, four are expressed in developing heart: connexin37 (Cx37), connexin40 (Cx40), connexin43 (Cx43), and connexin45 (Cx45). Although each cardiac connexin has a different pattern of expression, some heart cells coexpress multiple connexins during cardiac morphogenesis. Since different connexins could have overlapping functions, some developmental phenotypes may only become evident when more than one connexin is ablated. In this study, we interbred Cx40(-/-) and Cx43(-/-) mice to generate mice lacking both Cx40 and Cx43. Cx40(-/-)Cx43(-/-) mice die around embryonic day 12.5 (E12.5), much earlier than either Cx40(-/-) or Cx43(-/-) mice, and they exhibit malformed hearts with ventricles that are abnormally rotated, suggesting a looping defect. Some Cx40(-/-)Cx43(-/-) animals also develop head defects characteristic of exencephaly. In addition, we examined mice lacking both Cx40 and Cx37 and found a high incidence of atrial and ventricular septal defects at birth. These results provide further evidence for the importance of gap junctions in embryonic development. Moreover, ablating different pairs of cardiac connexins results in distinct heart defects, suggesting both common and unique functions for Cx40, Cx43, and Cx37 during cardiac morphogenesis.  相似文献   

3.
The spatio-temporal expression of gap junction connexins (Cx) was investigated and correlated with the progression of cell cycle control in regenerating soleus muscle of Wistar rats. Notexin caused a selective myonecrosis followed by the complete recapitulation of muscle differentiation in vivo, including the activation, commitment, proliferation, differentiation and fusion of myogenic cells. In regenerating skeletal muscle, only Cx43 protein, out of Cx-s 26, –32, –37, –40, –43 and –45, was detected in desmin positive cells. Early expression of Cx43 in the proliferating single myogenic progenitors was followed by a progressive upregulation in interacting myoblasts until syncytial fusion, and then by a rapid decline in multinucleate myotubes. The significant upregulation of Cx43 gap junctions in aligned myoblasts preceding fusion was accompanied by the widespread nuclear expression of cyclin-dependent kinase inhibitors p21waf1/Cip1 and p27kip1 and the complete loss of Ki67 protein. The synchronized exit of myoblasts from the cell cycle following extensive gap junction formation suggests a role for Cx43 channels in the regulation of cell cycle control. The potential of Cx43 channels to stimulate p21waf1/Cip1 and p27kip1 is known. In the muscle, proving the involvement of Cx43 in either a direct or a bystander cell cycle regulation requires functional investigations.  相似文献   

4.
We analyzed the expression of connexin(Cx)43 in proliferating and differentiating C2C12cells and in myoblasts obtained from newborn mice. Cx43 was present in both cell types and under both conditions. The functional role of gap junctional communication (GJC) during terminal differentiation was evaluated in C2C12myoblasts in the presence or absence of the gap junction blocker 18β-glycyrrhetinic acid (β-GA). Differentiation was temporally analyzed through myogenin expression, activity of creatine kinase (CK), and yield of multinucleated cells. In cells treated with β-GA, the CK activity and myotube formation were reversibly blocked. While in control cultures positive myogenin expression was seen in cell clusters, in β-GA treated cultures the myogenin immunoreactivity was detected in few, preferentially sparse cells. The role of Cx43 during terminal differentiation was evaluated in cultures of myoblasts obtained from Cx43Cre-ER(T)/fltransgenic mice. Inducible deletion of Cx43 was obtained upon activation of Cre-ER(T) via 4-OH-tamoxifen applications. Cx43 deletion led to a drastic decrease in myogenin expression at 24 h of differentiation as compared to myoblasts from control mice. Our results indicate that Cx43-containing gap junctions are required for normal skeletal muscle terminal differentiation. These channels might provide a pathway for the intercellular transfer of signals involved in myogenesis.  相似文献   

5.
To mimic exercise-induced events such as energetic impairment, free radical generation, and lipid peroxidation in vitro, mouse-derived C2C12 myotubes were submitted to the inhibition of glycolytic and/or oxidative metabolism with 1 mM iodoacetate (IAA) and/or 2 mM sodium cyanide (CN), respectively, under 5% CO2/95% air up to 180 min. Electron spin resonance (ESR) analysis with a spin-trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) revealed time-course increases in spin adducts from hydroxyl radical (DMPO-OH) and carbon-centered radical (DMPO-R) in the supernatant of C2C12 myotubes treated with the combination of IAA + CN. In this condition, malondialdehyde (MDA) and lactate dehydrogenase (LDH) were released into the supernatant. By the addition of iron-chelating 1 mM deferoxamine to the C2C12 preparation with IAA + CN, both ESR signals of DMPO-OH and DMPO-R were completely abolished, and the release of MDA and LDH were significantly reduced, while cyanide-resistant manganese superoxide dismutase had neglegible effects on these parameters. Hence, a part of the injury of C2C12 myotube under IAA + CN was considered to result from the lipid peroxidation, which was induced by hydroxyl radical generated from iron-catalyzed systems such as the Fenton-type reaction. This in vitro model would be a helpful tool for investigating the free radical-related muscle injury.  相似文献   

6.
Eight different connexins are expressed in mouse epidermis with overlapping expression patterns in different epidermal layers. Analyses of mice with deficiency or modifications of distinct connexins yielded insights into the large variety of connexins in the epidermis. Connexin43 (Cx43) deficiency in mouse epidermis resulted in a significant acceleration of wound closure. Truncation by 125 amino acid residues of the Cx43 C-terminal region led to an altered epidermal expression pattern of Cx43 and defective development of the epidermal water barrier in transgenic mice, although the truncated Cx43 protein could still form open gap junctional channels in transfected HeLa cells. Thus, the phenotypic abnormalities observed in mice with truncated Cx43 protein (Cx43K258Stop) are more likely due to defective regulation of this protein rather than the closed Cx43 channel. Our studies of connexin-deficient mice revealed an extensive redundancy of connexins expressed in mouse epidermis. Epidermal connexins seem to form two functional groups in which deficiency of one connexin isoform can be compensated by other connexin isoforms of the same group.  相似文献   

7.
In the ovarian follicle, granulosa cells adjacent to the oocyte extend processes through the zona pellucida matrix, and these projections establish gap junctions both with the oocyte and with neighboring transzonal projections. The identity of connexins contributing to gap junctions between transzonal projections has not been extensively studied. Here, we examined the expression pattern of Cx37 and Cx43 in mouse zona pellucida using multiple connexin-specific antibodies. Immunofluorescence staining revealed abundant Cx37 and Cx43 puncta within the zona pellucida of both preantral and antral follicles. Cx37 persisted in the zona pellucida of mature follicles up to 5 h after an ovulatory stimulus whereas Cx43 was reduced in the zona pellucida by 3 h after an ovulatory stimulus. We suggest that in addition to its role in oocyte-granulosa cell communication, Cx37 could enable a distinct communication pathway between those granulosa cells that are in direct contact with the oocyte.  相似文献   

8.
Gap junctions (GJ) are formed by a number of homologous proteins termed connexins. Here expression of connexins Cx26, Cx32 and Cx43, was evaluated by immunofluorescence (IF) in mammary glands from virgin, pregnant and lactating rats. Cx26, Cx32 and Cx43 labeling was detected in epithelial parenchymal cells at all functional stages. Cx26 and Cx32 labeling was very low in glands from virgin animals, somewhat greater in glands from pregnant animals and significantly higher (in number and size) in lactating animals. In the last ones, Cx26 and Cx32 punctate labeling was localized to the basal and lateral membranes of alveolar epithelial cells and collecting ductules. Cx43 punctate labeling was restricted to the periphery of alveoli towards the basal pole of epithelial cells at all functional stages, and it enlarged slightly during lactation. At this localization, Cx43 may form GJ between myoepithelial cells and/or between epithelial and myoepithelial cells. Cx43 was also found to be steadily expressed in the connective tissue which surrounds and invades each parenchymal lobe, at all functional stages. At this localization, Cx43 may couple fibroblasts and/or adipose cells. IF studies in sections from lactating mice showed the same distribution of connexins. Immunoblots confirmed specificity of labeling and the presence of Cx32 and Cx43 in the mammary gland. The increase in connexin expression detected during pregnancy and lactation may be important for epithelial cell differentiation and secretion in the mammary gland.  相似文献   

9.
目的研究Cx43基因剔除(Cx43KO)小鼠胚胎心脏近端流出道组织中基因表达谱的改变,筛选可能导致Cx43KO小鼠流出道梗阻的相关基因。方法以胎龄(embryonic day,ED)14.5天的Cx43KO和野生型(Cx43WT)鼠胚心脏近端流出道部分为研究对象,分别提取总RNA,逆转录成cDNA;并在体外转录为cRNA,同时进行生物素标记及片段化;再与Affymetrix-4302.0基因芯片进行杂交。杂交信号经扫描后,应用相关生物信息软件分析基因表达情况。结果与Cx43WT组相比,Cx43KO组中表达上调2倍以上的基因共有287个,表达下调2倍以上的基因有199个。其中表达差异的基因参与转录调控、细胞周期等主要生理过程。进一步筛查表达差异1.5倍以上的基因发现,Galpha13信号通路上的多个基因在Cx43KO组有明显变化。结论利用基因芯片技术初步筛选出与Cx43KO鼠胚心脏近端流出道发育有关的多个基因,其中Galpha13信号通路上的相关基因可能与Cx43KO小鼠流出道梗阻的发生有关。  相似文献   

10.
目的:探讨不同功率的低强度650 nm激光刺激对C2C12成肌细胞耗氧率水平和相关蛋白的影响及其机制。方法:以体外培养的C2C12小鼠成肌细胞作为实验对象,以4×105个/孔接种于牵张6孔板中,采用输出功率5 mW,波长650 nm的二极管激光进行单次刺激,激光照射剂量分别0 J/cm2(0 min)、0.4 J/cm2(12.8 min)、0.8 J/cm2(25.6 min)。实验结束后,采用耗氧率试剂盒(Luxcel Biosciences)检测细胞耗氧率;提取细胞总蛋白,采用Western blot技术检测成肌调节因子(MyoD)、过氧化物酶体增殖活化受体γ共激活因子1α(PGC-1α)、雷帕霉素靶蛋白和磷酸化蛋白(p-mTOR/mTOR)表达。结果:与对照组相比,低剂量组细胞氧化耗氧率结果、MyoD、PGC-1α蛋白表达显著增加(P<0.05),高剂量组MyoD、PGC-1α蛋白表达显著增加(P<0.05),p-mTOR/mTOR蛋白显著降低(P<0.05)。结论:较低剂量(0.4 J/cm2)的650 nm低强度激光增强了细胞氧化功能水平,并对细胞分化相关蛋白有一定影响。其机制可能与适宜的激光刺激影响PGC-1α蛋白的表达,进而影响线粒体氧化呼吸有关。  相似文献   

11.
We analyzed the expression of connexin(Cx)43 in proliferating and differentiating C(2)C(12) cells and in myoblasts obtained from newborn mice. Cx43 was present in both cell types and under both conditions. The functional role of gap junctional communication (GJC) during terminal differentiation was evaluated in C(2)C(12) myoblasts in the presence or absence of the gap junction blocker 18beta-glycyrrhetinic acid (beta-GA). Differentiation was temporally analyzed through myogenin expression, activity of creatine kinase (CK), and yield of multinucleated cells. In cells treated with beta-GA, the CK activity and myotube formation were reversibly blocked. While in control cultures positive myogenin expression was seen in cell clusters, in beta-GA treated cultures the myogenin immunoreactivity was detected in few, preferentially sparse cells. The role of Cx43 during terminal differentiation was evaluated in cultures of myoblasts obtained from Cx43(Cre-ER(T)/fl) transgenic mice. Inducible deletion of Cx43 was obtained upon activation of Cre-ER(T) via 4-OH-tamoxifen applications. Cx43 deletion led to a drastic decrease in myogenin expression at 24 h of differentiation as compared to myoblasts from control mice. Our results indicate that Cx43-containing gap junctions are required for normal skeletal muscle terminal differentiation. These channels might provide a pathway for the intercellular transfer of signals involved in myogenesis.  相似文献   

12.
Gap junctions—clusters of intercellular channels built by connexins (Cx)—are thought to be important for vascular cell functions such as differentiation, control of tone, or growth. In the vascular system, gap junctions can be formed by four different connexins (Cx37, Cx40, Cx43 and Cx45). The permeability of these connexin-formed gap junctions determines the amount of intercellular coupling and can be modulated by several vasoactive substances such as prostacyclin or nitric oxide (NO). We demonstrate here that NO has specific effects on certain connexins. Using two different techniques—injection of a fluorescent dye in single cells as well as detection of the de novoformation of gap junctions by a flow cytometry based technique—we found that NO decreases the functional coupling in Cx37 containing gap junctions whereas it increases the de novoformation of gap junctions containing Cx40. We conclude that NO, in addition to its known vasomotor effects, has a novel role in controlling intercellular coupling resulting in opposing effects depending on the specific connexin expressed in the cells.  相似文献   

13.
The development and function of the mammary gland require precise control of gap junctional intercellular communication (GJIC). Here, we review the expression and function of gap junction proteins, connexins, in the normal mouse and human mammary gland. We then discuss the possible tumor-suppressive role of Cx26 and Cx43 in primary breast tumors and through the various stages of breast cancer metastasis and consider whether connexins or GJIC may actually promote tumorigenesis at some stages. Finally, we present in vitro data on the impact of connexin expression on breast cancer cell metastasis to the bone. We observed that Cx43 expression inhibited the invasive and migratory potentials of MDA-MB-231 breast cancer cells in a bone microenvironment, provided by the MC3T3-E1 mouse osteoblastic cell line. Expression of either Cx26 or Cx43 had no effect on MDA-MB-231 growth and adhesion under the influence of osteoblasts and did not result in regulation of osteogenic gene expression in these breast cancer cells. Furthermore, connexin-expressing MDA-MB-231 cells did not have an effect on the growth or differentiation of MC3T3-E1 cells. In summary, we conclude that connexin expression and GJIC are integral to the development and differentiation of the mammary gland. In breast cancer, connexins generally act as tumor suppressors in the primary tumor; however, in advanced breast tumors, connexins appear to act as both context-dependent tumor suppressors and facilitators of disease progression.  相似文献   

14.
Gap junction channels formed by connexins (Cx) may play essential roles in some processes that occur during retinal development, such as apoptosis and calcium wave spread. The present study was undertaken to determine the distribution pattern of Cx36, Cx43, and Cx45 by immunofluorescence, as well as their gene expression levels by quantitative PCR during postnatal development of the mouse retina. Our results showed an increased expression of neuronal Cx36 from P1 until P10, when this Cx reached adult levels, and it was mainly distributed in the outer and inner plexiform layers. In turn, Cx43 was almost absent in retinal progenitor cells at P1, it became more prominent in glial cell processes about P10, and did not change until adulthood. Double-labeling studies in situ and in vitro with antivimentin, a Müller cell marker, confirmed that Cx43 was expressed by these cells. In addition, quantitative PCR showed that Cx43 and vimentin shared very similar temporal expression patterns. Finally, in contrast to Cx36 and Cx43, Cx45 mRNA was strongly down-regulated during development. In early postnatal days, Cx45 was seen ubiquitously distributed throughout the retina in cells undergoing proliferation and differentiation, as well in differentiated neurons. In adult retina, this protein had a more restricted distribution both in neurons and glial cells, as confirmed in situ and in vitro. In conclusion, we observed a distinct temporal expression pattern for Cx36, Cx43, and Cx45, which is probably related to particular roles in retinal function and maintenance of homeostasis during development of the mouse retina.  相似文献   

15.
间隙连接蛋白 (Cx)基因在胚胎发育、细胞生长、分化以及细胞内环境的稳定过程中起重要调节作用 .肿瘤发生与Cx基因的表达及功能异常密切相关 ,肿瘤细胞常存在Cx基因表达下调或缺失 .将人Cx2 6基因编码区cDNA序列 ,亚克隆于真核表达载体pcDNA3 1(+) ,采用脂质体转染 ,将重组表达载体pcDNA3 1(+) Cx2 6转入鼻咽癌细胞系HNE1,使Cx2 6基因在HNE1中重表达 ,探讨Cx2 6基因对鼻咽癌细胞系HNE1的生物学功能的影响 .研究结果表明 :Cx2 6基因的重表达 ,抑制HNE1细胞生长 ,细胞周期阻滞于G0 G1期 ,HNE1细胞的克隆形成能力下降 ,裸鼠致瘤能力减弱 .  相似文献   

16.
During muscle development and regeneration of skeletal muscle in mice connexin43 (Cx43) and connexin39 (Cx39) are specifically expressed: Cx43 in satellite cells and myoblasts, whereas Cx39 is exclusively expressed in myogenin-positive cells. We generated Cx39 deficient mice by replacing the coding region of the Gjd4 gene by DNA coding for the enhanced green fluorescent protein eGFP. Adult Cx39 deficient mice exhibit no obvious phenotypic alterations of skeletal muscle compared to wild type mice in the resting state. However, myogenesis in Cx39 deficient embryos is accelerated as indicated by increased myogenin expression on ED13.5 and ED16.5 and increased expression of Cx43 in developing skeletal muscle. In addition, the regeneration process of skeletal muscle in Cx39 deficient mice is accelerated as shown by a 2 day earlier onset of MyoD and myogenin expression, relative to wild type littermates. Interestingly, Cx43 expression was also upregulated in Cx39 deficient mice during regeneration of skeletal muscle. We hypothesize that Cx43 may compensate for the loss of Cx39 during myogenesis and regeneration.  相似文献   

17.
Connexin 33 (Cx33) is a testis-specific gap junction protein. We previously reported that Cx33 exerts dominant-negative effect on gap junction intercellular communication by sequestering Cx43 within early endosomes in Sertoli cells. However, the molecular mechanisms that drive this process are unknown. The present study analyzed: (i) the trafficking of Cx33 and Cx43 in wild-type Sertoli cells transfected with Cx33-DsRed2 and Cx43-green fluorescent protein vectors; (ii) the formation of heteromeric Cx33/Cx43 hemi-channels and their incorporation into gap junction plaques. Fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer and videomicroscopy studies demonstrated that Cx33 and Cx43 associated to form heteromeric oligomers that trafficked along microtubules to the plasma membrane. However, the plaques containing Cx33 were not functional. Immunoprecipitation experiments revealed that zonula occludens-1 (ZO-1), a scaffold protein proposed to secure Cx in gap junction plaques at the cell–cell boundary, associated with Cx33 in testis extracts. In cells expressing Cx33, Cx33 and ZO-1 specifically interacted with P1 phosphorylated and P0 unphosphorylated isoforms of Cx43, and the ZO-1 membranous signal level was reduced. It is suggested that alteration of Cx43/ZO-1 association by Cx33 could be one mechanism by which Cx33 exerts its dominant-negative effect on gap junction plaque.  相似文献   

18.
19.
The open reading frames of 17 connexins from Syrian hamster (using tissues) and 16 connexins from the Chinese hamster cell line V79, were fully (Cx30, Cx31, Cx37, Cx43 and Cx45) or partially sequenced. We have also detected, and partially sequenced, seven rat connexins that previously were unavailable. The expression of connexin genes was examined in some hamster organs and cultured hamster cells, and compared with wild-type mouse and the cancer-prone Min mouse. Although the expression patterns were similar for most organs and connexins in hamster and mouse, there were also some prominent differences (Cx29 and 30.3 in testis; Cx31.1 and 32 in eye; Cx46 in brain, kidney and testis; Cx47 in kidney). This suggests that some connexins have species-specific expression profiles. In contrast, there were minimal differences in expression profiles between wild type and Min mice. Species-specific expression profiles should be considered in attempts to make animal models of human connexin-associated diseases.  相似文献   

20.
Previous studies shows that connexins appear very early during murine embryo development, the gap junctional intercellular communication found in the inner cell mass of early embryo is also maintained in embryonic stem cells (ESC), and expression of oxytocin receptor (OTR) is developmentally regulated at early embryonic development. However, effect of oxytocin (OT) on the regulation of the connexin43 (Cx43) and maintenance of undifferentiation is not fully understood in stem cells. Therefore, we investigated the effect of OT on Cx43 expression and related signaling cascades in mouse ESC. OT increased Cx43 expression that was inhibited by the OTR inhibitor atosiban. In experiments to examine whether the effect of OT depends on lipid rafts, caveolin-1 (cav-1), cav-2, and flotillin-2, but not OTR, were detected in lipid raft fractions. Also, colocalization of OTR, cav-1, and cav-2 was not detected. Moreover, the lipid raft disruptor methyl-β-cyclodextrin did not attenuate OT-induced Cx43 expression. In experiments to examine related signaling pathways, OT activated cAMP/protein kinase A (PKA) which was inhibited by adenylyl cyclase inhibitor SQ 22536 and PKA inhibitor PKI. OT increased nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) phosphorylation which was inhibited by PKI. OT also increased cAMP response element-binding (CREB)/CREB-binding protein (CBP) expression in the nucleus and induced the formation of CREB1/NF-κB/CBP complexes, which was blocked by the NF-κB-specific small interfering RNA, NF-κB inhibitors, SN50, and bay11-7082. Complex disruption by NF-κB inhibitors decreased OT-induced Cx43 expression. In conclusion, OT stimulates Cx43 expression through the NF-κB/CREB/CBP complex via the lipid raft-independent OTR-mediated cAMP/PKA in mouse ESC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号