首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
目前,白血病复发是患者死亡的主要原因之一。肿瘤细胞和微环境的相互作用,以及隐匿在骨髓中的肿瘤干细胞,促进了白血病的复发和向淋巴组织的转移,因此白血病的治疗、转移和复发问题受到广泛关注。外泌体是由绝大多数细胞分泌的双层脂质膜囊泡,可以调控细胞间的交流和信息传递。在白血病细胞、基质细胞和内皮细胞之间的相互联系中都涉及到外泌体,白血病细胞来源的外泌体存在于白血病患者的血浆中,能把其携带的白血病相关抗原及微小RNA呈递给靶细胞,促进白血病肿瘤细胞的增殖,有助于肿瘤细胞实现免疫逃避,保护白血病细胞抵抗化疗药物导致的细胞毒性作用,促进血管生成及肿瘤细胞的迁移。因此,外泌体与白血病的转移、治疗及预后密切相关,可以用来检测和监测白血病的进展。本文综述了外泌体的来源、形成与分泌机制,以及外泌体在白血病发生前、发展中、预后和免疫治疗中所扮演的重要角色。  相似文献   

2.
Tumor-derived exosomes are nano-sized vesicles acting as multi-signal devices influencing tumor growth at local and distant sites. Exosomes are derived from the endolysosomal compartment and can shuttle diverse biomolecules like nucleic acids (microRNAs and DNA fragments), lipids, proteins, and even pharmacological compounds from a donor cell to recipient cells. The transfer of cargo to recipient cells enables tumor-derived exosomes to influence diverse cellular functions like proliferation, cell survival, and migration in recipient cells, highlighting tumor-derived exosomes as important players in communication within the tumor microenvironment and at distant sites. In this review, we discuss the mechanisms associated with exosome biogenesis and cargo sorting. In addition, we highlight the communication of tumor-derived exosomes in the tumor microenvironment during different phases of tumor development, focusing on angiogenesis, immune escape mechanisms, drug resistance, and metastasis.  相似文献   

3.
Mesenchymal stem cells (MSCs) are multipotent stem cells with marked potential for regenerative medicine because of their strong immunosuppressive and regenerative abilities. The therapeutic effects of MSCs are based in part on their secretion of biologically active factors in extracellular vesicles known as exosomes. Exosomes have a diameter of 30-100 nm and mediate intercellular communication and material exchange. MSC-derived exosomes (MSC-Exos) have potential for cell-free therapy for diseases of, for instance, the kidney, liver, heart, nervous system, and musculoskeletal system. Hence, MSC-Exos are an alternative to MSC-based therapy for regenerative medicine. We review MSC-Exos and their therapeutic potential for a variety of diseases and injuries.  相似文献   

4.
外泌体是细胞分泌的一种纳米级囊泡结构,在血液、唾液、尿液等多种体液中均有分布.作为一类重要的细胞间通信分子,外泌体含有多种具有生物活性的成分,可通过多种方式在人体中发挥调节作用.目前在多种类型的细胞中均发现外泌体的存在,而肿瘤细胞来源的外泌体由于其本身的特性和功能特点,可通过微环境介导肿瘤细胞的增生、血管形成和免疫耐受,并可通过介导上皮-间质转化(epithelial-mesenchymal transition, EMT)
和胞内药物排斥反应等增加肿瘤细胞的化疗抵抗能力.同时,因其含有肿瘤细胞所分泌的特异性成分,因而可通过对外泌体中相关分子改变的检测,对疾病进行诊断和监测,并可为临床个体化用药提供新思路.  相似文献   

5.
Profound skeletal muscle loss can lead to severe disability and cosmetic deformities. Mesenchymal stem cell (MSC)-derived exosomes have shown potential as an effective therapeutic tool for tissue regeneration. This study aimed to determine the regenerative capacity of MSC-derived exosomes for skeletal muscle regeneration. Exosomes were isolated from human adipose tissue-derived MSCs (AD-MSCs). The effects of MSC-derived exosomes on satellite cells were investigated using cell viability, relevant genes, and protein analyses. Moreover, NOD-SCID mice were used and randomly assigned to the healthy control (n = 4), muscle defect (n = 6), and muscle defect + exosome (n = 6) groups. Muscle defects were created using a biopsy punch on the quadriceps of the hind limb. Four weeks after the surgery, the quadriceps muscles were harvested, weighed, and histologically analyzed. MSC-derived exosome treatment increased the proliferation and expression of myocyte-related genes, and immunofluorescence analysis for myogenin revealed a similar trend. Histologically, MSC-derived exosome-treated mice showed relatively preserved shapes and sizes of the muscle bundles. Immunohistochemical staining revealed greater expression of myogenin and myoblast determination protein 1 in the MSC-derived exosome-treated group. These results indicate that exosomes extracted from AD-MSCs have the therapeutic potential for skeletal muscle regeneration.  相似文献   

6.
Exosomes are mobile extracellular vesicles with a diameter 40 to 150 nm. They play a critical role in several processes such as the development of cancers, intercellular signaling, drug resistance mechanisms, and cell-to-cell communication by fusion onto the cell membrane of recipient cells. These vesicles contain endogenous proteins and both noncoding and coding RNAs (microRNA and messenger RNAs) that can be delivered to various types of cells. Furthermore, exosomes exist in body fluids such as plasma, cerebrospinal fluid, and urine. Therefore, they could be used as a novel carrier to deliver therapeutic nucleic-acid drugs for cancer therapy. It was recently documented that, hypoxia promotes exosomes secretion in different tumor types leading to the activation of vascular cells and angiogenesis. Cancer cell-derived exosomes (CCEs) have been used as prognostic and diagnostic markers in many types of cancers because exosomes are stable at 4°C and −70°C. CCEs have many functional roles in tumorigenesis, metastasis, and invasion. Consequently, this review presents the data about the therapeutic application of exosomes and the role of CCEs in cancer invasion, drug resistance, and metastasis.  相似文献   

7.
Exosomes are small vesicles (50–150 nm) of endocytic origin that are released by many different cell types. Exosomes in the tumor microenvironment may play a key role in facilitating cell-cell communication. Exosomes are reported to predominantly contain RNA and proteins. In this study, we investigated whether exosomes from pancreatic cancer cells and serum from patients with pancreatic ductal adenocarcinoma contain genomic DNA. Our results provide evidence that exosomes contain >10-kb fragments of double-stranded genomic DNA. Mutations in KRAS and p53 can be detected using genomic DNA from exosomes derived from pancreatic cancer cell lines and serum from patients with pancreatic cancer. In addition, using whole genome sequencing, we demonstrate that serum exosomes from patients with pancreatic cancer contain genomic DNA spanning all chromosomes. These results indicate that serum-derived exosomes can be used to determine genomic DNA mutations for cancer prediction, treatment, and therapy resistance.  相似文献   

8.
Most patients with ovarian cancer (OC) are diagnosed at the advanced stages due to the absence of appropriate early diagnostic markers. Thus, OC is a gynecological disease with a low-survival rate. Exosomes are extracellular vesicles that are widely being considered as mediators for the noninvasive diagnosis of OC. Exosomes are expected to aid in the effective diagnosis of OC because they carry components, such as RNAs, proteins, and lipids, the compositions of which vary depending on the pathological characteristics of the patient. In this review, we document the methods that have been developed to detect exosomes and their components in OC. We also assess the potential biomarkers contained in exosomes that could be clinically useful, such as proteins, microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and phospholipids. Moreover, we described the role played by exosomes in the tumor microenvironment and in OC angiogenesis, migration, and tumor growth. Various types of cells in the tumor microenvironment, including macrophages, fibroblasts, and mesenchymal stem cells (MSCs), interact directly with exosomes and promote or inhibit the progression of OC. Therefore, we summarize the studies that have suggested a therapeutic approach to OC using exosomes. Collectively, understanding the mechanism of exosome-based OC progression would broaden our knowledge regarding the diagnosis and therapy of OC.  相似文献   

9.
Exosomes are bioactive lipid bilayer vesicles released by most cells to mediate intercellular signal communication. Tumor cells release exosomes transmitting signals cell-to-cell and between cells and organs, which will promote tumor angiogenesis, regulate tumor stromal response, immune response, and enhance tumor cells resistance, while exosomes-derived from immune cells in tumor microenvironment play a key role in inhibiting tumor growth and killing tumor cells. Programmed cell death protein 1 (PD-1) combined with Programmed cell death protein ligand 1(PD-L1) can inhibit the activation of T cells, for tumor cells achieve immune escape by overexpressing PD-L1 and binding PD-1 on T cells. The use of anti-PD-1 / PD-L1 antibodies prevents their binding to a certain extent and partially restores T cell's activity. This article mainly discusses the role of exosomal PD-L1 in tumor progression and therapeutic efficacy after application of clinical antibodies, as well as the relation between different reactivity and immunity set points in cancer patients of different races, with different types and at different stages. Besides, we propose that exosomal PD-L1 may become targets for anti-PD-1 / PD-L1 antibody therapy, biomarkers for liquid biopsy, and drug carriers.  相似文献   

10.
Mesenchymal stem cells (MSCs) are a class of pluripotent cells that can release a large number of exosomes which act as paracrine mediators in tumour-associated microenvironment. However, the role of MSC-derived exosomes in pathogenesis and progression of cancer cells especially osteosarcoma has not been thoroughly clarified until now. In this study, we established a co-culture model for human bone marrow-derived MSCs with osteosarcoma cells, then extraction of exosomes from induced MSCs and study the role of MSC-derived exosomes in the progression of osteosarcoma cell. The aim of this study was to address potential cell biological effects between MSCs and osteosarcoma cells. The results showed that MSC-derived exosomes can significantly promote osteosarcoma cells’ proliferation and invasion. We also found that miR-21-5p was significantly over-expressed in MSCs and MSC-derived exosomes by quantitative real-time polymerase chain reaction (qRT-PCR), compared with human foetal osteoblastic cells hFOB1.19. MSC-derived exosomes transfected with miR-21-5p could significantly enhance the proliferation and invasion of osteosarcoma cells in vitro and in vivo. Bioinformatics analysis and dual-luciferase reporter gene assays validated the targeted relationship between exosomal miR-21-5p and PIK3R1; we further demonstrated that miR-21-5p-abundant exosomes derived human bone marrow MSCs could activate PI3K/Akt/mTOR pathway by suppressing PIK3R1 expression in osteosarcoma cells. In summary, our study provides new insights into the interaction between human bone marrow MSCs and osteosarcoma cells in tumour-associated microenvironment.  相似文献   

11.
Exosomes are small membrane vesicles of endosomal origin, which are secreted from a variety of cell types. During the 1980s exosomes were first described as organelles to remove cell debris and unwanted molecules. The discovery that exosomes contain proteins, messenger and microRNAs suggests a role as mediators in cell-to-cell communication. Exosomes can be transported between different cells and influence physiological pathways in the recipient cells. In the present review, we will summarize the biological function of exosomes and their involvement in physiological and pathological processes. Moreover, the potential clinical application of exosomes as biomarkers and therapeutic tools will be discussed.  相似文献   

12.
外泌体(exosomes)是细胞分泌的纳米级细胞外囊泡.外泌体通过释放其内的生物活性大分子,比如微小RNA(microRNA,miRNA)到受体细胞,从而介导细胞间交流通讯. MiRNAs作为一类主要在转录后水平负向调控靶mRNAs的非编码RNAs,其在外泌体中含量最为丰富.在肺癌中,miRNAs经肿瘤细胞分泌的外泌体转运释放而发挥重要的作用.本文主要讨论了外泌体源性miRNAs在肺癌发生发展的各个阶段,包括血管生成、细胞增殖、侵袭转移、免疫逃逸、耐药等方面的作用,以及其在作为新型肺癌诊断和预后标志物方面的临床价值.  相似文献   

13.
Exosomes are 30 to 150 nm-diameter lipid bilayer-enclosed extracellular vesicles that enable cell-to-cell communication through secretion and uptake. The exosomal cargoes contain RNA, lipids, proteins, and metabolites which can be delivered to recipient cells in vivo. In a healthy lung, exosomes facilitate interaction between adaptive and innate immunity and help maintain normal lung physiology. However, tumor-derived exosomes in lung cancer (LC) can, on the other hand, restrict immune cell proliferation, cause apoptosis in activated CD8+ T effector cells, reduce natural killer cell activity, obstruct monocyte differentiation, and promote proliferation of myeloid-derived suppressor and regulatory T cells. In addition, exosomes in the tumor microenvironment may also play a critical role in cancer progression and the development of drug resistance. In this review, we aim to comprehensively examine the current updates on the role of exosomes in lung carcinogenesis and their potential application as a diagnostic, prognostic, and therapeutic tool in lung cancer.  相似文献   

14.
Statins reduce serum cholesterol and isoprenoids by the inhibition of cholesterol synthesis in the mevalonate pathway. Exosomes are extracellular vesicles (30–200 nm) released by all cells that regulate cell-to-cell communication in health and disease by transferring functional proteins, metabolites and nucleic acids to recipient cells. There are many reports that show an effect of statins on exosomes, from their production and release to their content and performance. In this review, we have summarized existing data on the impact of statins on the biosynthesis, secretion, content, uptake and function of exosomes.  相似文献   

15.
Exosomes are small membrane vesicles 50‐150 nm in diameter released by a variety of cells, which contain miRNAs, mRNAs and proteins with the potential to regulate signalling pathways in recipient cells. Exosomes deliver nucleic acids and proteins to participate in orchestrating cell‐cell communication and microenvironment modulation. In this review, we summarize recent progress in our understanding of the role of exosomes in hepatocellular carcinoma (HCC). This review focuses on recent studies on HCC exosomes, considering biogenesis, cargo and their effects on the development and progression of HCC, including chemoresistance, epithelial‐mesenchymal transition, angiogenesis, metastasis and immune response. Finally, we discuss the clinical application of exosomes as a therapeutic agent for HCC.  相似文献   

16.
Colorectal cancer (CRC) is one of the main causes of cancer-related deaths. However, the surgical control of the CRC progression is difficult, and in most cases, the metastasis leads to cancer-related mortality. Mesenchymal stem/stromal cells (MSCs) with potential translational applications in regenerative medicine have been widely researched for several years. MSCs could affect tumor development through secreting exosomes. The beneficial properties of stem cells are attributed to their cell–cell interactions as well as the secretion of paracrine factors in the tissue microenvironment. For several years, exosomes have been used as a cell-free therapy to regulate the fate of tumor cells in a tumor microenvironment. This review discusses the recent advances and current understanding of assessing MSC-derived exosomes for possible cell-free therapy in CRC.  相似文献   

17.
外泌体是细胞分泌的30~150 nm的细胞外囊泡,在肿瘤微环境(tumor microenvironment,TME)中介导细胞间通讯,环状RNA(circular RNA,circRNAs)是一类由前体mRNA(precursor mRNA,pre-mRNA)反向剪接生成的非编码RNA(non-codingRNA,n...  相似文献   

18.
It has been widely reported that exosomes derived from mesenchymal stem cells (MSCs) have a protective effect on myocardial infarction (MI). However, the specific molecules which play a damaging role in MSCs shuttled miRNAs are much less explored. MiRNA-153-3p (miR-153-3p) is a vital miRNA which has been proved to modulate cell proliferation, apoptosis, angiogenesis, peritoneal fibrosis and aortic calcification. Here, we aim to study the effect and mechanism of miR-153-3p in MSC-derived exosomes on hypoxia-induced myocardial and microvascular damage. The exosomes of MSCs were isolated and identified, and the MSCs-exosomes with low expression of miR-153-3p (exo-miR-153-3p) were constructed to interfere with the endothelial cells and cardiomyocytes in the oxygen-glucose deprivation (OGD) model. The viability, apoptosis, angiogenesis of endothelial cells and cardiomyocytes were determined. Additionally, ANGPT1/VEGF/VEGFR2/PI3K/Akt/eNOS pathway was detected by ELISA and/or western blot. The results illustrated that exo-miR-153-3p significantly reduced the apoptosis of endothelial cells and cardiomyocytes and promoted their viability. Meanwhile, exo-miR-153-3p can promote the angiogenesis of endothelial cells. Mechanistically, miR-153-3p regulates the VEGF/VEGFR2/PI3K/Akt/eNOS pathways by targeting ANGPT1. Intervention with VEGFR2 inhibitor (SU1498, 1 μM) remarkably reversed the protective effect of exo-miR-153-3p in vascular endothelial cells and cardiomyocytes treated by OGD. Collectively, MSCs-derived exosomes with low-expressed miR-153-3p notably promotes the activation of ANGPT1 and the VEGF/VEGFR2 /PI3K/Akt/eNOS pathways, thereby preventing the damages endothelial cells and cardiomyocytes against hypoxia.  相似文献   

19.
Exosomes offer a new perspective on the biology of cancer with both diagnostic and therapeutic concepts. Due to the cell-to-cell association, exosomes are involved in the progression, metastasis, and therapeutic efficacy of the tumor. They can be isolated from blood and other body fluids to determine the disease progression in the body, including cancer growth. In addition to being reservoirs of biochemical markers of cancer, exomes can be designed to restore tumor immunity. Tumor exosomes interact with different cells in the tumor microenvironment to confer beneficial modulations, responsible for stromal activity, angiogenesis, increased vascular permeability, and immune evasion. Exosomes also contribute to the metastasis with the aim of epithelial transmission to the mesenchyme and the formation of premetastatic niches. Moreover, exosomes protect cells against the cytotoxic effects of chemotherapeutic drugs and prevent the transmission of chemotherapy resistance to adjacent cells. Therefore, exosomes are essential for many fatal cancer agents, and understanding their origins and role in cancer is important. In this article, we attempted to clarify the potential of exosomes for the application in cancer diagnosis and therapy.  相似文献   

20.
Pancreatic cancer cells (PCCs) interact with pancreatic stellate cells (PSCs), which play a pivotal role in pancreatic fibrogenesis, to develop the cancer-conditioned tumor microenvironment. Exosomes are membrane-enclosed nanovesicles, and have been increasingly recognized as important mediators of cell-to-cell communications. The aim of this study was to clarify the effects of PCC-derived exosomes on cell functions in PSCs. Exosomes were isolated from the conditioned medium of Panc-1 and SUIT-2 PCCs. Human primary PSCs were treated with PCC-derived exosomes. PCC-derived exosomes stimulated the proliferation, migration, activation of ERK and Akt, the mRNA expression of α-smooth muscle actin (ACTA2) and fibrosis-related genes, and procollagen type I C-peptide production in PSCs. Ingenuity pathway analysis of the microarray data identified transforming growth factor β1 and tumor necrosis factor as top upstream regulators. PCCs increased the expression of miR-1246 and miR-1290, abundantly contained in PCC-derived exosomes, in PSCs. Overexpression of miR-1290 induced the expression of ACTA2 and fibrosis-related genes in PSCs. In conclusion, PCC-derived exosomes stimulate activation and profibrogenic activities in PSCs. Exosome-mediated interactions between PSCs and PCCs might play a role in the development of the tumor microenvironment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号