首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 124 毫秒
1.
肺癌转移是导致肺癌高死亡率的最重要原因。外泌体是由多种活细胞释放到胞外的直径为30~150nm的微囊泡。其中,肿瘤细胞,尤其是肺癌细胞分泌的外泌体通过向临近和远端的受体细胞传递microRNAs (miRNAs),从而调控转移细胞的远端定植及血管新生等过程。此外,肺癌细胞来源的外泌体miRNAs可以表征肿瘤细胞的病理和生理状态,因此,在肺癌的早期诊断、预测和生存预后中具有重要的应用价值。该综述主要对外泌体miRNAs在肺癌转移过程中的调控作用及其作为早期诊断标志物的潜在应用价值进行介绍。  相似文献   

2.
非小细胞肺癌(non-small cell lung cancer,NSCLC)是全球发病率最高的恶性肿瘤之一,大多数患者在确诊时已是中晚期,预后极差。外泌体是细胞主动分泌的直径为40~100 nm的膜小体,包含丰富的蛋白质、microRNAs(miRNAs)等物质,参与细胞间的物质交换和信息交流。非小细胞肺癌源性的外泌体miRNA参与调节肿瘤细胞的发生发展、侵袭及转移等过程,在肿瘤细胞的生理、病理过程中扮演了重要角色。本文将系统阐述外泌体的生物学特性、生物学功能以及外泌体miR-145和miR-21在调控非小细胞肺癌进展、早期诊断、治疗靶点筛选及预后中的作用,为外泌体miRNA基础研究与临床应用提供参考。  相似文献   

3.
外泌体是由各种组织和细胞所释放的细胞外囊泡,在细胞之间充当各种分子(包括蛋白质,脂质和RNA)的载体,从而调节或干预特定的生理过程。MiRNAs是一类小的非编码RNA,能够靶向多个mRNA并诱导其降解或翻译抑制以调控相关基因表达。目前对外泌体内微小RNA(miRNAs)的研究最为广泛。间充质干细胞(MSCs)是一种多能干细胞,因其具有多向分化潜能、造血支持和促进干细胞植入、免疫调控等特点,被视为理想的种子细胞,用于延缓、治疗衰老和病变引起的组织器官损伤。近年研究证实,MSCs还可通过释放的外泌体发挥其临床治疗作用。越来越多的证据表明,MSCs源性外泌体内miRNAs参与了动脉粥样硬化、高血压、糖尿病血管并发症和慢性肾脏疾病等心血管细胞损伤的修复,本文就MSCs源性外泌体miRNAs在损伤心血管细胞修复中的作用及机制进行总结。  相似文献   

4.
已知细胞间的信息交流不仅可以通过直接接触,或释放信号分子等方式,同时还存在另一种细胞通讯方式即释放外泌体。外泌体是由细胞分泌,直径为30~100 nm的囊泡结构。外泌体含有蛋白质、脂质、mRNAs和miRNAs等成分,并且能够靶向运输到其他细胞或组织中,从而在细胞间的信息交流、物质传递方面发挥重要作用。本文对外泌体的基本特征、形成过程、功能以及在疾病诊断与治疗中的应用等方面进行简要综述,重点介绍外泌体在免疫调控和肿瘤发生方面的功能。外泌体作为一种广泛存在的亚细胞成分,虽然体积小,组成成分简单,然而,其复杂功能具有重要的研究价值。对外泌体功能的深入了解将为肿瘤等疾病的预防和治疗提供更多的诊断标志物、疫苗以及治疗思路与手段。  相似文献   

5.
大熊猫脐带间充质干细胞(Umbilical cord mesenchymal stem cells, UC-MSCs)通过旁分泌所释放的外泌体在大熊猫保健与疾病治疗方面具有一定的应用前景。本研究旨在建立大熊猫UC-MSCs外泌体分离方法,开展生物学特征分析和分子鉴定,并研究UC-MSCs外泌体中miRNAs的种类与功能。采用超速离心法从大熊猫UCMSCs培养上清中成功分离外泌体,通过透射电子显微镜进行形态学观察,纳米颗粒跟踪分析仪检测粒径大小,蛋白免疫印迹法检测特异性分子标记表达。采用Small RNA测序技术对UC-MSCs外泌体中的miRNAs进行鉴定,并对其靶基因进行了预测与功能分析。结果显示,大熊猫UC-MSCs外泌体呈圆形杯托状结构,直径为(79.15±4.81) nm,外泌体标志蛋白CD81与TSG101呈阳性表达而CALNEXIN呈阴性表达。大熊猫UC-MSCs外泌体中的miRNA主要为miR-148-3p (30.28%)与miR-21-5p (21.72%)。本研究首次从大熊猫UC-MSCs培养上清中分离出外泌体,并对其所含的miRNAs进行富集分析及功能预测,为大熊...  相似文献   

6.
目的:探讨肝癌细胞外泌体中差异表达的microRNAs(miRNAs)在肝细胞癌(HCC)诊断中的应用价值。方法:通过高通量测序筛选肝癌细胞外泌体中差异表达的miRNAs。实时定量PCR验证差异表达分子;检测差异表达的miRNAs在健康人(Health)、慢性乙型肝炎患者(CHB)、肝硬化患者(LC)及乙型肝炎病毒阳性的肝细胞癌患者(HCC)血清外泌体中的表达。结果:高通量测序筛选到肝癌细胞外泌体中差异表达的miRNA共88种,其中58种表达上调,30种表达下调。选择其中8种差异表达的miRNAs进行q RT-PCR验证,结果显示,此8种miRNAs在细胞上清外泌体、细胞内、癌与癌旁组织中的表达趋势与测序结果一致。miR-221-3p和miR-224-5p在HCC组外泌体中的表达水平显著高于Health组、CHB组和LC组(P0.01),miR-124-3p和let-7a-5p在HCC组外泌体中的表达水平显著低于其他各组(P0.05)。四个组中,miR-21-5p、miR-191-5p、miR-34a-5p和miR-122-5p的表达水平不存在显著性差异(P0.05)。结论:血清外泌体中的miR-221-3p、miR-224-5p、miR-124-3p和let-7a-5p可能成为肝细胞癌的候选标志物。  相似文献   

7.
肝细胞癌(hepatocellular carcinoma,HCC)是全球第六大最常见的恶性肿瘤。外泌体中微小RNA(microRNAs,miRNAs)可通过在细胞间传递交流来参与调控血管生成、上皮-间充质转化和介导免疫微环境等多种通路途径,从而促进HCC细胞的生长增殖和迁移侵袭,以及诱导肿瘤细胞耐药。此外,外泌体源性miRNAs展现了显著的组织特异性和作为新颖生物标志物的巨大潜力,已成为当前HCC早期液体活检研究的热门领域。本文综述了外泌体源性miRNAs在HCC发生发展和耐药中的作用机制,揭示了其潜在的系统性分子调控网络,归纳了其在HCC早期诊断中的应用价值。  相似文献   

8.
外泌体是细胞间重要的信息交流介质,包含多种活性分子,如蛋白质、脂类、DNA和微RNA(microRNA,miRNA)等,外泌体可从供体细胞分泌后直接或间接作用于受体细胞,进而影响细胞之间的生命活动。更有意义的是,外泌体内的miRNAs可在血液中稳定存在,且当肿瘤发生时出现异常表达,进而参与肿瘤的发生发展,影响肿瘤患者生存及预后。近年大量研究报道显示,外泌体内miRNAs可作为肝癌诊断的新生物标志物及治疗肝癌的潜在靶标。本文就近年来外泌体内miRNAs在肝癌中的表达及其临床应用进行综述。  相似文献   

9.
外泌体是多泡体与细胞质膜融合后释放的细胞外囊泡.它们携带有源自分泌细胞的功能性蛋白质,脂质和核酸,能够介导细胞间通信,并在生物体的致病过程中发挥重要作用.当前,对外泌体在病毒感染中的作用机制研究,以及外泌体作为病毒感染诊断和治疗的潜在标志物研究仍处于初级阶段.首先阐述了外泌体的组成和生物学发生机制;然后重点阐述了外泌体在病毒感染中的作用机制,尤其是其在免疫调节中的作用;最后探讨了外泌体作为病毒感染诊断和治疗的潜在标志物的可能性及其应用前景.  相似文献   

10.
非小细胞肺癌(non-small cell lung cancer, NSCLC)常伴有不同器官转移。外泌体由活细胞分泌,可作为细胞与细胞之间信号传递的介质,参与机体病理生理过程,如肿瘤的上皮-间质转化、免疫抑制和逃逸、血管生成、炎症反应等,共同促进肿瘤转移。近年来大量研究表明,外泌体与NSCLC转移密切相关,尤其是外泌体在NSCLC迁移和侵袭潜力、免疫系统调节、转移前生态位形成方面具有重要作用。因此,对近年来外泌体在这几方面的作用及其机制的研究进展做一综述,有助于进一步了解外泌体在NSCLC发展中的作用。  相似文献   

11.
Exosomes, small extracellular vesicles ranging from 30 to 150 nm, are secreted by various cell types, including tumour cells. Recently, microRNAs (miRNAs) were identified to be encapsulated and hence protected from degradation within exosomes. These exosomal miRNAs can be horizontally transferred to target cells, in which they subsequently modulate biological processes. Increasing evidence indicates that exosomal miRNAs play a critical role in modifying the microenvironment of lung cancers, possibly facilitating progression, invasion, angiogenesis, metastasis and drug resistance. In this review, we summarize the novel findings on exosomal miRNA functions during lung cancer initiation and progression. In addition, we highlight their potential role and challenges as biomarkers in lung cancer diagnosis, prognosis and drug resistance and as therapeutic agents.  相似文献   

12.
Lung cancer is the major human malignancy, accounting for 30% of all cancer-related deaths worldwide. Poor survival of lung cancer patients, together with late diagnosis and resistance to classic chemotherapy, highlights the need for identification of new biomarkers for early detection. Among different cancer biomarkers, small non-coding RNAs called microRNAs (miRNAs) are considered the most promising, owing to their remarkable stability, their cancer-type specificity, and their presence in body fluids. However, results of multiple previous attempts to identify circulating miRNAs specific for lung cancer are inconsistent, likely due to two main reasons: prominent variability in blood miRNA content among individuals and difficulties in distinguishing tumor-relevant miRNAs in the blood from their non-tumor counterparts. To overcome these impediments, we compared circulating miRNA profiles in patients with lung squamous cell carcinoma (SCC) before and after tumor removal, assuming that the levels of all tumor-relevant miRNAs would drop after the surgery. Our results revealed a specific panel of the miRNAs (miR-205, -19a, -19b, -30b, and -20a) whose levels decreased strikingly in the blood of patients after lung SCC surgery. Interestingly, miRNA profiling of plasma fractions of lung SCC patients revealed high levels of these miRNA species in tumor-specific exosomes; additionally, some of these miRNAs were also found to be selectively secreted to the medium by cultivated lung cancer cells. These results strengthen the notion that tumor cells secrete miRNA-containing exosomes into circulation, and that miRNA profiling of the exosomal plasma fraction may reveal powerful cancer biomarkers.  相似文献   

13.
Hypoxia plays an important role during the evolution of cancer cells and their microenvironment. Emerging evidence suggests communication between cancer cells and their microenvironment occurs via exosomes. This study aimed to clarify whether hypoxia affects angiogenic function through exosomes secreted from leukemia cells. We used the human leukemia cell line K562 for exosome-generating cells and human umbilical vein endothelial cells (HUVECs) for exosome target cells. Exosomes derived from K562 cells cultured under normoxic (20%) or hypoxic (1%) conditions for 24 h were isolated and quantitated by nanoparticle tracking analysis. These exosomes were then cocultured with HUVECs to evaluate angiogenic activity. The exosomes secreted from K562 cells in hypoxic conditions significantly enhanced tube formation by HUVECs compared with exosomes produced in normoxic conditions. Using a TaqMan low-density miRNA array, we found a subset of miRNAs, including miR-210, were significantly increased in exosomes secreted from hypoxic K562 cells. We demonstrated that cancer cells and their exosomes have altered miRNA profiles under hypoxic conditions. Although exosomes contain various molecular constituents such as proteins and mRNAs, altered exosomal compartments under hypoxic conditions, including miR-210, affected the behavior of endothelial cells. Our results suggest that exosomal miRNA derived from cancer cells under hypoxic conditions may partly affect angiogenic activity in endothelial cells.  相似文献   

14.
It has recently been established that exosomes can mediate intercellular cross-talk under normal and pathological conditions through the transfer of specific miRNAs. As muscle cells secrete exosomes, we addressed the question of whether skeletal muscle (SkM) exosomes contained specific miRNAs, and whether they could act as “endocrine signals” during myogenesis. We compared the miRNA repertoires found in exosomes released from C2C12 myoblasts and myotubes and found that 171 and 182 miRNAs were exported into exosomes from myoblasts and myotubes, respectively. Interestingly, some miRNAs were expressed at higher levels in exosomes than in their donor cells and vice versa, indicating a selectivity in the incorporation of miRNAs into exosomes. Moreover miRNAs from C2C12 exosomes were regulated during myogenesis. The predicted target genes of regulated exosomal miRNAs are mainly involved in the control of important signaling pathways for muscle cell differentiation (e.g., Wnt signaling pathway). We demonstrated that exosomes from myotubes can transfer small RNAs (C. elegans miRNAs and siRNA) into myoblasts. Moreover, we present evidence that exosome miRNAs secreted by myotubes are functionally able to silence Sirt1 in myoblasts. As Sirt1 regulates muscle gene expression and differentiation, our results show that myotube–exosome miRNAs could contribute to the commitment of myoblasts in the process of differentiation. Until now, myokines in muscle cell secretome provided a conceptual basis for communication between muscles. Here, we show that miRNA exosomal transfer would be a powerful means by which gene expression is orchestrated to regulate SkM metabolic homeostasis.  相似文献   

15.
Mesenchymal stem cells can be replaced by exosomes for the treatment of inflammatory diseases, injury repair, degenerative diseases, and tumors. Exosomes are small vesicles rich in a variety of nucleic acids [including messenger RNA, Long non-coding RNA, microRNA (miRNA), and circular RNA], proteins, and lipids. Exosomes can be secreted by most cells in the human body and are known to play a key role in the communication of information and material transport between cells. Like exosomes, miRNAs were neglected before their role in various activities of organisms was discovered. Several studies have confirmed that miRNAs play a vital role within exosomes. This review focuses on the specific role of miRNAs in MSC-derived exosomes (MSC-exosomes) and the methods commonly used by researchers to study miRNAs in exosomes. Taken together, miRNAs from MSC-exosomes display immense potential and practical value, both in basic medicine and future clinical applications, in treating several diseases.  相似文献   

16.
MicroRNAs (miRNAs) are released from cells in association with proteins or microvesicles. We previously reported that malignant transformation changes the assortment of released miRNAs by affecting whether a particular miRNA species is released or retained by the cell. How this selectivity occurs is unclear. Here we report that selectively exported miRNAs, whose release is increased in malignant cells, are packaged in structures that are different from those that carry neutrally released miRNAs (n-miRNAs), whose release is not affected by malignancy. By separating breast cancer cell microvesicles, we find that selectively released miRNAs associate with exosomes and nucleosomes. However, n-miRNAs of breast cancer cells associate with unconventional exosomes, which are larger than conventional exosomes and enriched in CD44, a protein relevant to breast cancer metastasis. Based on their large size, we call these vesicles L-exosomes. Contrary to the distribution of miRNAs among different microvesicles of breast cancer cells, normal cells release all measured miRNAs in a single type of vesicle. Our results suggest that malignant transformation alters the pathways through which specific miRNAs are exported from cells. These changes in the particles and their miRNA cargo could be used to detect the presence of malignant cells in the body.  相似文献   

17.
目前乳腺癌的临床诊疗主要依赖影像学和相对较少的预后/预测指标(如雌激素受体、孕激素受体、HER2等).这些生物标志物主要是基于原发肿瘤病灶的生物学检测,可用于转移或复发的检测指标很少,尤其是在切除肿瘤原发灶后,复发监测很困难.循环cell-free microRNAs(circulating cf-miRNAs,或简称circulating miRNAs)的发现为改变现有乳腺癌临床诊疗模式提供了可能.Cell-free miRNA通过外泌体、微囊或转运蛋白的主动外泌机制,可能在循环miRNA的形成中起着重要作用.Cell-free miRNA特别是circulating miRNA不仅自身可以作为信号分子影响肿瘤细胞和组织微环境,而且还可以与其他信号通路发生交互通讯来调控肿瘤部位新生血管的形成和肿瘤细胞表型的上皮-间质转换,影响乳腺癌的侵袭和转移.本文综述了循环miRNA的特征与分泌机制,特别是乳腺癌相关的循环miRNA参与作为一种液体活检生物标志物在乳腺癌诊断、预后评价和疗效评估的临床意义.  相似文献   

18.
Breast cancer is one of the most prevalent cancers in women. Triple-negative breast cancer consists 15% to 20% of breast cancer cases and has a poor prognosis. Cancerous transformation has several causes one of which is dysregulation of microRNAs (miRNAs) expression. Exosomes can transfer miRNAs to neighboring and distant cells. Thus, exosomal miRNAs can transfer cancerous phenotype to distant cells. We used gene expression omnibus (GEO) datasets and miRNA target prediction tools to find overexpressed miRNA in breast cancer cells and their target genes, respectively. Exosomes were extracted from MDA-MB-231 and MCF-7 cells and characterized. Overexpression of the miRNAs of MDA-MB-231 cells and their exosomes were analyzed using quantitative Real-time PCR. The target genes expression was also evaluated in the cell lines. Luciferase assay was performed to confirm the miRNAs: mRNAs interactions. Finally, MCF-7 cells were treated with MDA-MB-231 cells’ exosomes. The target genes expression was evaluated in the recipient cells. GSE60714 results indicated that miR-9 and miR-155 were among the overexpressed miRNAs in highly metastatic triple negative breast cancer cells and their exosomes. Bioinformatic studies showed that these two miRNAs target PTEN and DUSP14 tumor suppressor genes. Quantitative Real-time PCR confirmed the overexpression of the miRNAs and downregulation of their targets. Luciferase assay confirmed that the miRNAs target PTEN and DUSP14. Treatment of MCF-7 cells with MDA-MB-231 cells’ exosomes resulted in target genes downregulation in MCF-7 cells. We found that miR-9 and miR-155 were enriched in metastatic breast cancer exosomes. Therefore, exosomal miRNAs can transfer from cancer cells to other cells and can suppress their target genes in the recipient cells.  相似文献   

19.
外泌体是一种直径为30 nm^100 nm的细胞外脂质囊泡,几乎可以被所有类型的细胞释放,包括癌细胞。作为细胞间通讯的重要介质,宿主细胞或癌细胞分泌的外泌体可以介导包括miRNA、mRNA、DNA片段及蛋白质在内的多种物质参与肿瘤的发生、生长、侵袭及转移过程。尤其是miRNA已经被证实是肿瘤衍生的外泌体用于实现自身功能机制的重要组成部分。因此,外泌体miRNA在调节肿瘤发生发展、侵袭转移、肿瘤免疫应答、肿瘤血管生成及肿瘤耐药方面具有显著功能。本文就外泌体介导的miRNA对肿瘤的相关调控作用作一综述。  相似文献   

20.
The class of persistent gamma-herpesviruses has developed a variety of strategies that exploit host-cell regulatory pathways to ensure a long-lasting, well-balanced infection of their host. However when these pathways are deregulated, an otherwise harmless infection can lead to disease including cancer. We recently demonstrated that the human herpes virus 4 (HHV4) also known as Epstein-Barr virus (EBV), encodes for small regulatory non-coding microRNAs (miRNAs) that can be transferred from an infected cell to uninfected neighboring cells. Upon arrival these miRNAs are functional in the recipient cell, in that they are able to down regulate specific target genes. These secreted miRNAs are transported to recipient cells via small nano-sized vesicles (known as exosomes) that are of endosomal origin, formed as intraluminal vesicles (ILV) inside multivesicular bodies (MVB). One question that needs to be addressed is how viral miRNAs are sorted into these exosomes. Mature miRNAs, including those of viral origin, are loaded into RNA-induced silencing complexes (RISC) for gene silencing via blocking mRNA translation and/or initiating mRNA decay. Recent insights indicate that cytoplasmic RNA granules rich in RISC complexes are closely associated with endosomes. In fact, selective components of RISC, including GW182 and Argonaut proteins, miRNAs and mRNAs are present in exosomes. Thus miRNA function, mRNA stability and exosome-mediated intercellular communication converge at the level of endosomes. Since endosomes can be considered as key intracellular cross-roads that regulate communication of cells with their exterior, including neighboring cells, it is perhaps not surprising that viruses have found means to exploit this pathway to their benefit. Little is known however, how and if (micro) RNA species are specifically sorted into ILVs and what (micro)RNA-binding proteins are involved. Here we discuss recent developments relating to intracellular trafficking and function of miRNA-containing protein complexes that EBV may exploit for promoting or restricting miRNAs sorting into exosomes for intercellular regulatory functions. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号