首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PEGylation can improve the therapeutic efficacy of proteins by increasing serum half-life of proteins and reducing immunogenicity and antigenicity. However, PEGylation results in a substantial loss of the bioactivity of proteins due to the steric hindrance of polyethylene glycol (PEG). Dimerization of the proteins is an efficient approach to increase the bioactivity of the PEG-protein conjugates. Here, staphylokinase (SAK) was used due to its therapeutic potential for coronary thrombolysis. SAK dimers (dSAK) were prepared by engineering cysteine residue at the C-terminus of SAK and dimerization of the cysteine residue with 1,4-bismaleimidobutane. PEG aldehyde was used for site-specific PEGylation of dSAK at one of its two N-termini. Structural analysis indicated that dimerization of SAK can decrease the steric hindrance of PEG and increase the binding affinity of PEG-SAK to plasminogen. Dimerization of SAK increased the relative bioactivity of PEG-SAK from 39.0% to 62.0%. Therefore, site-specifically PEGylated dSAK at one of its two N-termini has higher bioactivity than the N-terminal PEGylated SAK.  相似文献   

2.
A solid-phase adsorption method was developed to circumvent the disadvantage of the conventional liquid-phase PEGylation, i.e. the heterogeneity of the PEGylated products. The model proteins, human serum albumin (HSA) and staphylokinase (SAK), were adsorbed on the ion exchange chromatography media, followed by PEGylation with succinimidyl carbonate (SC)-mPEG5K and salt elution. Since PEGylation with SC-PEG5K alters the positive charge of the proteins, Q-Sepharose Big Beads and DEAE Sepharose Fast Flow were used for adsorption of HSA and SAK, respectively. Size exclusion chromatography and SDS-PAGE studies demonstrated that solid-phase PEGylation of proteins generate monoPEGylated proteins with the yield of 35–47%. Circular dichroism and intrinsic fluorescence studies showed that solid-phase PEGylation led to little conformational change of the proteins. Solid-phase PEGylation resulted in 35% loss in the biological activity of SAK, which is lower than the liquid-phase PEGylation (70%).  相似文献   

3.
Rajamohan G  Dikshit KL 《FEBS letters》2000,474(2-3):151-158
Staphylokinase (SAK) forms an inactive 1:1 complex with plasminogen (PG), which requires both the conversion of PG to plasmin (Pm) to expose an active site in PG-SAK activator complex and the amino-terminal processing of SAK to expose the positively charged (Lys-11) amino-terminus after removal of the 10 N-terminal amino acid residues from the full length protein. The mechanism by which the N-terminal segment of SAK affects its PG activation capability was investigated by generating SAK mutants, blocked in the native amino-terminal processing site of SAK, and carrying an alteration in the placement of the positively charged amino acid residue, Lys-11, and further studying their interaction with PG, Pm, miniplasmin and kringle structures. A ternary complex formation between PG-SAK PG was observed when an immobilized PG-SAK binary complex interacted with free radiolabelled PG in a sandwich binding experiment. Formation of this ternary complex was inhibited by a lysine analog, 6-aminocaproic acid (EACA), in a concentration dependent manner, suggesting the involvement of lysine binding site(s) in this process. In contrast, EACA did not significantly affect the formation of binary complex formed by native SAK or its mutant derivatives. Furthermore, the binary (activator) complex formed between PG and SAK mutant, PRM3, lacking the N-terminal lysine 11, exhibited 3-4-fold reduced binding with PG, Pm or miniplasmin substrate during ternary complex formation as compared to native SAK. Additionally, activator complex formed with PRM3 failed to activate miniplasminogen and exhibited highly diminished activation of substrate PG. Protein binding studies indicated that it has 3-5-fold reduction in ternary complex formation with miniplasmin but not with the kringle structure. In aggregate, these observations provide experimental evidence for the participation of the N-terminal region of SAK in accession and processing of substrate by the SAK-Pm activator complex to potentiate the PG activation by enhancing and/or stabilizing the interaction of free PG.  相似文献   

4.
Staphylokinase (SAK) is reported to have a serine protease domain with no proteolytic activity unlike other plasminogen activators like tissue plasminogen activator (t-PA) and urokinase. A unique protease property of Staphylokinase was observed when SAK was expressed as a fusion protein in inducible Escherichia coli expression vectors. This finding was further investigated by cloning and expressing different SAK fusions, both native and N-terminal deletions, with fusion tags like glutathione S-transferase (GST) and signal sequence of SAK in bacterial system. While all the N-terminal SAK fusions were found to self-cleave in crude and purified preparations, the C-terminal SAK fusion was stable. The cleavage property of Staphylokinase fusion proteins, inhibited by reduced glutathione and PMSF, was independent of its thrombolytic activity and also independent on the type of host employed for its expression. The serine protease domain of the SAK gene possibly lies between 20th to 77th amino acid and serine 41 of this region appears critical for such a cleavage property.  相似文献   

5.
《Process Biochemistry》2014,49(7):1092-1096
PEGylation can effectively improve the therapeutic potential of staphylokinase (SAK), a thrombolysis agent for therapy of myocardial infarction. However, polyethylene glycol (PEG) can sterically shield SAK and drastically decrease its bioactivity. In the present study, N-terminally PEGylated SAKs (5 and 20 kDa PEG), C-terminally PEGylated SAKs with phenyl linker and the ones with amyl linker (5 and 20 kDa PEG) were prepared. The effects of the PEG length, the PEGylation site and linker chemistry on the bioactivity of the heat-treated PEGylated SAK were investigated. Heat treatment at 70 °C for 2 h can improve the bioactivity of the C-terminally PEGylated SAKs, where the one with amyl linker and 20 kDa PEG showed the highest increase extent (27%) in the bioactivity. Thus, our study can advance the development of long-acting pharmaceutical protein with high bioactivity.  相似文献   

6.
The plasminogen activator staphylokinase (SAK) is a promising thrombolytic agent for treatment of myocardial infarction. It can specifically stimulate the thrombolysis of both erythrocyte-rich and platelet-rich clots. However, SAK lacks fibrin-binding and thrombin inhibitor activities, two functions which would supplement and potentially improve its thrombolytic potency. Creating a recombinant fusion protein is one approach for combining protein domains with complementary functions. To evaluate SAK for use in a translational fusion protein, both N- and C-terminal fusions to SAK were constructed by using hirudin as a fusion partner. Recombinant fusion proteins were secreted from Bacillus subtilis and purified from culture supernatants. The rate of plasminogen activation by SAK was not altered by the presence of an additional N- or C-terminal protein sequence. However, cleavage at N-terminal lysines within SAK rendered the N-terminal fusion unstable in the presence of plasmin. The results of site-directed mutagenesis of lysine 10 and lysine 11 in SAK suggested that a plasmin-resistant variant cannot be created without interfering with the plasmin processing necessary for activation of SAK. Although putative plasmin cleavage sites are located at the C-terminal end of SAK at lysine 135 and lysine 136, these sites were resistant to plasmin cleavage in vitro. Therefore, C-terminal fusions represent stable configurations for developing improved thrombolytic agents based on SAK as the plasminogen activator component.  相似文献   

7.
为了建立聚乙二醇 (PEG) 巯基定点修饰溶葡球菌酶的方法,并检验假定连接区的突变与修饰对酶活的影响,对溶葡球菌酶的假定连接区进行了巯基聚乙二醇定点修饰研究。通过分析溶葡球菌酶的结构特征,选择两个结构域之间的氨基酸 (133-154aa) 进行定点突变引入半胱氨酸残基。使用单甲氧基聚乙二醇马来酰亚胺 (mPEG-MAL) 进行定点修饰,对修饰后的酶进行纯化并测定酶活性。结果表明定点突变的半胱氨酸残基PEG修饰效率高、产物单一,运用简便的Ni2+-NTA柱亲和层析法实现了一步分离,获得了高纯度的目标蛋白,但在连接区进行定点突变及PEG定点修饰后的酶活有不同程度的降低,表明假定连接区部分位点的PEG修饰会对溶葡球菌酶的催化活性产生一定影响。  相似文献   

8.
Conjugation of truncated recombinant staphylokinase (trSak) with polyethylene glycol (PEG) is an effective way to overcome its short plasma half-life and enhance its therapeutic potential. However, conventional amine directed PEGylation chemistry inevitably led to modification at its functionally important N terminus, which resulted in a significantly reduced bioactivity of trSak. In this study, a novel solid phase PEGylation process was developed to shield the N-terminal region of the protein from PEGylation. The process was achieved by oriented adsorption of an N-terminally His-tagged trSak (His-trSak) onto an immobilized metal-ion affinity chromatography (IMAC). His-trSak was efficiently separated and retained on IMAC media before reaction with succinimidyl carbonate mPEG (SC-mPEG, 5, 10 or 20 kDa). The IMAC derived mono-PEGylated His-trSak showed structural and stability properties similar to the liquid phase derived conjugate. However, isoelectric focusing electrophoresis analysis revealed that mono-PEGylated His-trSaks via solid phase PEGylation were more homogeneous than those from liquid phase PEGylation. Moreover, tryptic peptide mapping analysis suggested that a complete N-terminal blockage of IMAC bound His-trSak from PEGylation with 10 kDa- and 20 kDa-SC-mPEG. In contrast, only partial protection of the N-terminal region was obtained for 5 kDa-SC-mPEG. Bioactivities of 10 kDa- and 20 kDa-PEG-His-trSak conjugates without N-terminal PEGylation were significantly higher than those of randomly PEGylated products. This further demonstrated the advantage of our new on-column PEGylation strategy.  相似文献   

9.
Annexins (ANXs) are a family of calcium dependent phospholipid binding proteins. Phospholipids such as phosphatidylserine are rapidly exposed on the surfaces of injured endothelial cells, activated platelets, and apoptotic cells in a large number of disorders. In this study, annexin V and XI (ANXV and ANXXI) were individually fused to the C-terminal of staphylokinase (SAK), a fibrin-selective thrombolytic protein, to form chimeras for evaluation of their in-vitro thrombolytic activities. The two chimeras were found to have plasminogen activation activity of comparable efficiency. When the chimeras were challenged under higher concentrations of plasmin for 1 h, hydrolysis of them into moieties was not seen on SDS–PAGE. In two thrombolytic assays, SAK-ANXXI was found to resolve both platelet rich plasma (PRP) clots and platelet poor plasma (PPP) clots with an efficiency similar to that of SAK. However, SAK-ANXV showed significantly reduced efficiency. With regard to anticoagulation ability, SAK-ANXXI was also found to have a stronger effect on dose-dependent extension of clotting time among the four tested proteins. The unique long N-terminal tail of ANXXI, composed of 202 residues, in contrast to the 16 residues of ANXV, probably served successfully to dispatch two moieties to function properly in a complicated microenvironment. Hence, a new option other than the most committed ANXV for the ANX based chimera without elaboration of linker construction is presented.  相似文献   

10.
PEG修饰被认为是改善重组蛋白药物特性的最有效手段,包括增加蛋白质药物在体内的血浆半衰期,降低免疫原性和抗原性。目前典型的PEG修饰手段为将PEG连接至蛋白质的游离氨基,包括赖氨酸和N-末端,但这种连接缺乏选择性,产物为混合物,活性及工艺稳定性差,难以控制。酶法PEG化修饰能有效克服上述缺点,其中谷氨酰胺转氨酶(TGase)可以作为PEG化定点修饰用酶。文中选择重组人干扰素α2a(IFNα2a)进行酶法修饰反应,通过计算机模拟预测IFNα2a可以在第101位Gln特异性定点修饰。将IFNα2a与40 kDa的Y型PEG在微生物来源的谷氨酰胺转氨酶(mTG)催化下进行定点PEG化修饰。结果显示,mTG可以介导IFNα2a特异性位点Gln的单一定点PEG修饰,产生分子量为58 495.6 Da的PEG-Gln101-IFNα2a分子。圆二色谱结果显示,PEG-Gln101-IFNα2a与未修饰的IFNα2a具有相同的二级结构。SD大鼠药代结果显示,与IFNα2a相比,PEG-Gln101-IFNα2a能有效提高药代动力学参数,强于已上市PEGIFNα2a-PEGASYS?。  相似文献   

11.
Annexins (ANXs) are a family of calcium dependent phospholipid binding proteins. Phospholipids such as phosphatidylserine are rapidly exposed on the surfaces of injured endothelial cells, activated platelets, and apoptotic cells in a large number of disorders. In this study, annexin V and XI (ANXV and ANXXI) were individually fused to the C-terminal of staphylokinase (SAK), a fibrin-selective thrombolytic protein, to form chimeras for evaluation of their in-vitro thrombolytic activities. The two chimeras were found to have plasminogen activation activity of comparable efficiency. When the chimeras were challenged under higher concentrations of plasmin for 1 h, hydrolysis of them into moieties was not seen on SDS-PAGE. In two thrombolytic assays, SAK-ANXXI was found to resolve both platelet rich plasma (PRP) clots and platelet poor plasma (PPP) clots with an efficiency similar to that of SAK. However, SAK-ANXV showed significantly reduced efficiency. With regard to anticoagulation ability, SAK-ANXXI was also found to have a stronger effect on dose-dependent extension of clotting time among the four tested proteins. The unique long N-terminal tail of ANXXI, composed of 202 residues, in contrast to the 16 residues of ANXV, probably served successfully to dispatch two moieties to function properly in a complicated microenvironment. Hence, a new option other than the most committed ANXV for the ANX based chimera without elaboration of linker construction is presented.  相似文献   

12.
Staphylokinase (SAK) is a 15.5-kDa protein from Staphylococcus aureus that activates plasminogen by forming a 1 : 1 complex with plasmin. Recombinant SAK has been shown in clinical trials to induce fibrin-specific clot lysis in patients with acute myocardial infarction. However, SAK elicits high titers of neutralizing antibodies. Biochemical and protein engineering studies have demonstrated the feasibility of generating SAK variants with reduced antigenicity yet intact thrombolytic potency. Here, we present X-ray crystallographic evidence that the SAK(S41G) mutant may assume a dimeric structure. This dimer model, at 2.3-A resolution, could explain a major antigenic epitope (residues A72-F76 and residues K135-K136) located in the vicinity of the dimer interface as identified by phage-display. These results suggest that SAK antigenicity may be reduced by eliminating dimer formation. We propose several potential mutation sites at the dimer interface that may further reduce the antigenicity of SAK.  相似文献   

13.
The effects of PEGylation of glucose-dependent insulinotropic polypeptide (GIP) on potency and dipeptidyl peptidase IV (DPPIV) stability are reported. N-terminal modification of GIP(1-30) with 40 kDa polyethylene glycol (PEG) abrogates functional activity. In contrast, C-terminal PEGylation of GIP(1-30) maintains full agonism and reasonable potency at the GIP receptor and confers a high level of DPPIV resistance. Moreover, the dual modification of N-terminal palmitoylation and C-terminal PEGylation results in a full agonist of comparable potency to native GIP that is stable to DPPIV cleavage. The results provide the basis for the development of long acting, PEGylated GIP, GIP variants, or GIP-based hybrid peptide therapeutics.  相似文献   

14.
Arginine deiminase (ADI) is a therapeutic protein for cancer therapy of arginine-auxotrophic tumors. However, its application as anticancer drug is hampered by its poor stability under physiological conditions in the bloodstream. Commonly, random PEGylation is being used for increasing the stability of ADI and in turn the improved half-life. However, the traditional random PEGylation usually leads to poor PEGylation efficiency due to the limited number of Lys on the protein surface. To boost the PEGylation efficiency and enhance the stability of ADI further, surface engineering of PpADI (an ADI from Pseudomonas plecoglossicida) to increase the suitable PEGylation sites was carried out. A new in silico approach for increasing the PEGylation sites was developed. The validation of this approach was performed on previously identified PpADI variant M31 to increase potential PEGylation sites. Four Arg residues on the surface of PpADI M31 were selected through three criteria and subsequently substituted to Lys, aiming for providing primary amines for PEGylation. Two out of the four substitutions (R299K and R382K) enhanced the stability of PEGylated PpADI in human serum. The average numbers of PEGylation sites were increased from ~12 (tetrameric PpADI M31, starting point) to ~20 (tetrameric PpADI M36, final variant). Importantly, the PEGylated PpADI M36 after PEGylation exhibited significantly improved Tm values (M31: 40°C; M36: 40°C; polyethylene glycol [PEG]-M31: 54°C; PEG-M36: 64°C) and half-life in human serum (M31: 1.9 days; M36: 2.0 days; PEG-M31: 3.2 days; PEG-M36: 4.8 days). These proved that surface engineering is an effective approach to increase the PEGylation efficiency which therefore enhances the stability of therapeutic enzymes. Furthermore, the PEGylated PpADI M36 represents a highly attractive candidate for the treatment of arginine-auxotrophic tumors.  相似文献   

15.
Huang Z  Zhu G  Sun C  Zhang J  Zhang Y  Zhang Y  Ye C  Wang X  Ilghari D  Li X 《PloS one》2012,7(5):e36423
Keratinocyte growth factor 1 (KGF-1) has proven useful in the treatment of pathologies associated with dermal adnexae, liver, lung, and the gastrointestinal tract diseases. However, poor stability and short plasma half-life of the protein have restricted its therapeutic applications. While it is possible to improve the stability and extend the circulating half-life of recombinant human KGF-1 (rhKGF-1) using solution-phase PEGylation, such preparations have heterogeneous structures and often low specific activities due to multiple and/or uncontrolled PEGylation. In the present study, a novel solid-phase PEGylation strategy was employed to produce homogenous mono-PEGylated rhKGF-1. RhKGF-1 protein was immobilized on a Heparin-Sepharose column and then a site-selective PEGylation reaction was carried out by a reductive alkylation at the N-terminal amino acid of the protein. The mono-PEGylated rhKGF-1, which accounted for over 40% of the total rhKGF-1 used in the PEGylation reaction, was purified to homogeneity by SP Sepharose ion-exchange chromatography. Our biophysical and biochemical studies demonstrated that the solid-phase PEGylation significantly enhanced the in vitro and in vivo biostability without affecting the over all structure of the protein. Furthermore, pharmacokinetic analysis showed that modified rhKGF-1 had considerably longer plasma half-life than its intact counterpart. Our cell-based analysis showed that, similar to rhKGF-1, PEGylated rhKGF-1 induced proliferation in NIH 3T3 cells through the activation of MAPK/Erk pathway. Notably, PEGylated rhKGF-1 exhibited a greater hepatoprotection against CCl(4)-induced injury in rats compared to rhKGF-1.  相似文献   

16.
Dahiya M  Singh S  Rajamohan G  Sethi D  Ashish  Dikshit KL 《FEBS letters》2011,585(12):1814-1820
Staphylokinase (SAK) forms a 1:1 stoichiometric complex with human plasmin (Pm) and switches its substrate specificity to generate a plasminogen (Pg) activator complex. Site-directed mutagenesis of SAKHis43 and SAKTyr44 demonstrated the crucial requirement of a positively charged and an aromatic residue, respectively, at these positions for optimal functioning of SAK-Pm activator complex. Molecular modeling studies further revealed the role of these residues in making cation-pi and pi-pi interactions with Trp215 of Pm and thus establishing the crucial intermolecular contacts within the active site cleft of the activator complex for the cofactor activity of SAK.  相似文献   

17.
PEGylation has turned proteins into important new biopharmaceuticals. The fundamental problems with the existing approaches to PEGylation are inefficient conjugation and the formation of heterogeneous mixtures. This is because poly(ethylene glycol) (PEG) is usually conjugated to nucleophilic amine residues. Our PEGylation protocol solves these problems by exploiting the chemical reactivity of both of the sulfur atoms in the disulfide bond of many biologically relevant proteins. An accessible disulfide bond is mildly reduced to liberate the two cysteine sulfur atoms without disturbing the protein's tertiary structure. Site-specific PEGylation is achieved with a bis-thiol alkylating PEG reagent that sequentially undergoes conjugation to form a three-carbon bridge. The two sulfur atoms are re-linked with PEG selectively conjugated to the bridge. PEGylation of a protein can be completed in 24 h and purification of the PEG-protein conjugate in another 3 h. We have successfully applied this approach to PEGylation of cytokines, enzymes, antibody fragments and peptides, without destroying their tertiary structure or abolishing their biological activity.  相似文献   

18.
When the extent of plasminogen activation by staphylokinase (SAK) or streptokinase (SK) was measured in human plasma, SAK barely induced plasminogen activation, whereas SK activated plasminogen significantly. When the plasma was clotted with thrombin, the plasminogen activation by SAK was markedly enhanced, but that of SK was little enhanced. Similarly, in a purified system composed of plasminogen, fibrinogen and alpha 2-plasmin inhibitor (alpha 2-PI, alpha 2-antiplasmin), such a fibrin clot increased the activity of SAK significantly. However, when alpha 2-PI was removed from the reaction system, enhancement of the SAK reaction was not observed. In addition, SAK as distinct from SK, showed very little interference with the action of alpha 2-PI. Plasminogen activation by SAK is thus essentially inhibited by alpha 2-PI, but this reaction is not inhibited in fibrin clots. These results suggest that SAK forms a complex with plasminogen, which binds to fibrin and induces fibrinolysis.  相似文献   

19.
Urokinase (uPA) is a serine protease that not only displays fibrinolytic function but also promotes host leukocytes to home to inflammatory sites. We have recently demonstrated that staphylokinase (SAK), which is a fibrinolytic protein secreted by Staphylococcus aureus, forms complexes with human neutrophil peptides (HNPs), which are members of the defensin family and have anti-microbial properties, thereby inhibiting the bactericidal effects of the HNPs. The aim of this study was to assess whether endogenous uPA, which has fibrinolytic properties similar to those of SAK, binds to HNPs and interferes with SAK/HNPs interaction. To this end, an ELISA was used to analyze the interactions between uPA and HNPs. HMW uPA had the ability to bind to both HNP types. The biological consequences of the formation of this complex were analyzed with respect to its bactericidal properties. HMW uPA killed S. aureus, albeit at relatively high doses (50-100 mug/ml). In contrast, the binding of HMW uPA to HNPs had no impact on the bactericidal functions of the HNPs. Importantly, the addition of HMW uPA to SAK eliminated the ability of SAK to neutralize HNPs. Our results demonstrate that endogenous HMW uPA inhibits S. aureus growth both directly, by cytolysis, and indirectly, by abrogation of the neutralizing effect of SAK on the bactericidal activities of HNPs. These findings indicate novel functions of HMW uPA in the host defense against staphylococcal infections.  相似文献   

20.
Addition of polyethylene glycol to protein (PEGylation) to improve stability and other characteristics is mostly nonspecific and may occur at all lysine residues, some of which may be within or near an active site. Resultant PEGylated proteins are heterogeneous and can show markedly lower bioactivity. We attempted to develop a strategy for site-specific mono-PEGylation using tumor necrosis factor-alpha (TNF-alpha). We prepared phage libraries expressing TNF-alpha mutants in which all the lysine residues were replaced with other amino acids. A fully bioactive lysine-deficient mutant TNF-alpha (mTNF-alpha-Lys(-)) was isolated by panning against TNF-alpha-neutralizing antibody despite reports that some lysine residues were essential for its bioactivity. mTNF-alpha-Lys(-) was site-specifically mono-PEGylated at its N terminus. This mono-PEGylated mTNF-alpha-Lys(-), with superior molecular uniformity, showed higher bioactivity in vitro and greater antitumor therapeutic potency than randomly mono-PEGylated wild-type TNF-alpha. These results suggest the usefulness of the phage display system for creating functional mutant proteins and of our site-specific PEGylation approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号