首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
2.
Autophagy is a cellular degradation process that is up-regulated upon starvation. Nutrition-dependent regulation of mTOR (mammalian target of rapamycin) is a major determinant of autophagy. RTK (receptor tyrosine kinase) signalling and AMPK (AMP-activated protein kinase) converge upon mTOR to suppress or activate autophagy. Nutrition-dependent regulation of autophagy is mediated via mTOR phosphorylation of the serine/threonine kinase ULK1 (unc51-like kinase 1). In the present study, we also describe ULK1 as an mTOR-independent convergence point for AMPK and RTK signalling. We initially identified ULK1 as a 14-3-3-binding protein and this interaction was enhanced by treatment with AMPK agonists. AMPK interacted with ULK1 and phosphorylated ULK1 at Ser(555) in vitro. Mutation of this residue to alanine abrogated 14-3-3 binding to ULK1, and in vivo phosphorylation of ULK1 was blocked by a dominant-negative AMPK mutant. We next identified a high-stringency Akt site in ULK1 at Ser(774) and showed that phosphorylation at this site was increased by insulin. Finally, we found that the kinase-activation loop of ULK1 contains a consensus phosphorylation site at Thr(180) that is required for ULK1 autophosphorylation activity. Collectively, our results suggest that ULK1 may act as a major node for regulation by multiple kinases including AMPK and Akt that play both stimulatory and inhibitory roles in regulating autophagy.  相似文献   

3.
Autophagy is a catabolic process in which cell components are degraded to maintain cellular homeostasis by nutrient limitations. Defects of autophagy are involved in numerous diseases, including cancer. Here, we demonstrate a new role of phospholipase D (PLD) as a regulator of autophagy. PLD inhibition enhances autophagic flux via ATG1 (ULK1), ATG5 and ATG7, which are essential autophagy gene products critical for autophagosome formation. Moreover, PLD suppresses autophagy by differentially modulating phosphorylation of ULK1 mediated by mTOR and adenosine monophosphate-activated protein kinase (AMPK), and by suppressing the interaction of Beclin 1 with vacuolar-sorting protein 34 (Vps34), indicating that PLD coordinates major players of the autophagic pathway, AMPK-mTOR-ULK1 and Vps34/Beclin 1. Ultimately, PLD inhibition significantly sensitized in vitro and in vivo cancer regression via genetic and pharmacological inhibition of autophagy, providing rationale for a new therapeutic approach to enhancing the anticancer efficacy of PLD inhibition. Collectively, we show a novel role for PLD in the molecular machinery regulating autophagy.  相似文献   

4.
Previous studies have demonstrated that AMP‐activated protein kinase (AMPK) controls autophagy through the mammalian target of rapamycin (mTOR) and Unc‐51 like kinase 1 (ULK1/Atg1) signaling, which augments the quality of cellular housekeeping, and that β‐guanidinopropionic acid (β‐GPA), a creatine analog, leads to a chronic activation of AMPK. However, the relationship between β‐GPA and aging remains elusive. In this study, we hypothesized that feeding β‐GPA to adult Drosophila produces the lifespan extension via activation of AMPK‐dependent autophagy. It was found that dietary administration of β‐GPA at a concentration higher than 900 mm induced a significant extension of the lifespan of Drosophila melanogaster in repeated experiments. Furthermore, we found that Atg8 protein, the homolog of microtubule‐associated protein 1A/1B‐light chain 3 (LC3) and a biomarker of autophagy in Drosophila, was significantly upregulated by β‐GPA treatment, indicating that autophagic activity plays a role in the effect of β‐GPA. On the other hand, when the expression of Atg5 protein, an essential protein for autophagy, was reduced by RNA interference (RNAi), the effect of β‐GPA on lifespan extension was abolished. Moreover, we found that AMPK was also involved in this process. β‐GPA treatment significantly elevated the expression of phospho‐T172‐AMPK levels, while inhibition of AMPK by either AMPK‐RNAi or compound C significantly attenuated the expression of autophagy‐related proteins and lifespan extension in Drosophila. Taken together, our results suggest that β‐GPA can induce an extension of the lifespan of Drosophila via AMPK‐Atg1‐autophagy signaling pathway.  相似文献   

5.
Phenotypic modulation of vascular smooth muscle cells (VSMCs) is involved in the pathophysiological processes of the intracranial aneurysms (IAs). Although shear stress has been implicated in the proliferation, migration, and phenotypic conversion of VSMCs, the molecular mechanisms underlying these events are currently unknown. In this study, we investigated whether shear stress(SS)-induced VSMC phenotypic modulation was mediated by autophagy involved in adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) pathway. The results show that shear stress could inhibit the expression of key VSMC contractile genes and induce pro-inflammatory/matrix-remodeling genes levels, contributing to VSMCs phenotypic switching from a contractile to a synthetic phenotype. More importantly, Shear stress also markedly increased the levels of the autophagy marker microtubule-associated protein light chain 3-II (LC3II), Beclin-1, and p62 degradation. The autophagy inhibitor 3-methyladenine (3-MA) significantly blocked shear-induced phenotypic modulation of VSMCs. To further explore the molecular mechanism involved in shear-induced autophagy, we found that shear stress could activate AMPK/mTOR/ULK1 signaling pathway in VSMCs. Compound C, a pharmacological inhibitor of AMPK, significantly reduced the levels of p-AMPK and p-ULK, enhanced p-mTOR level, and finally decreased LC3II and Beclin-1 level, which suggested that activated AMPK/mTOR/ULK1 signaling was related to shear-mediated autophagy. These results indicate that shear stress promotes VSMC phenotypic modulation through the induction of autophagy involved in activating the AMPK/mTOR/ULK1 pathway.  相似文献   

6.
It has been long recognised that activation of toll‐like receptors (TLRs) induces autophagy to restrict intracellular bacterial growth. However, the mechanisms of TLR‐induced autophagy are incompletely understood. Salmonella Typhimurium is an intracellular pathogen that causes food poisoning and gastroenteritis in humans. Whether TLR activation contributes to S. Typhimurium‐induced autophagy has not been investigated. Here, we report that S. Typhimurium and TLRs shared a common pathway to induce autophagy in macrophages. We first showed that S. Typhimurium‐induced autophagy in a RAW264.7 murine macrophage cell line was mediated by the AMP‐activated protein kinase (AMPK) through activation of the TGF‐β‐activated kinase (TAK1), a kinase activated by multiple TLRs. AMPK activation led to increased phosphorylation of Unc‐51‐like autophagy activating kinase (ULK1) at S317 and S555. ULK1 phosphorylation at these two sites in S. Typhimurium‐infected macrophages overrode the inhibitory effect of mTOR on ULK1 activity due to mTOR‐mediated ULK1 phosphorylation at S757. Lipopolysaccharide (LPS), flagellin, and CpG oligodeoxynucleotide, which activate TLR4, TLR5, and TLR9, respectively, increased TAK1 and AMPK phosphorylation and induced autophagy in RAW264.7 cells and in bone marrow‐derived macrophages. However, LPS was unable to induce TAK1 and AMPK phosphorylation and autophagy in TLR4‐deficient macrophages. TAK1 and AMPK‐specific inhibitors blocked S. Typhimurium‐induced autophagy and xenophagy and increased the bacterial growth in RAW264.7 cells. These observations collectively suggest that activation of the TAK1–AMPK axis through TLRs is essential for S. Typhimurium‐induced autophagy and that TLR signalling cross‐activates the autophagic pathway to clear intracellular bacteria.  相似文献   

7.
Some studies have shown that transplanted fat tissues usually cannot survive for long if adipose-derived stem cells (ADSCs) are removed from the tissues in advance. It is more meaningful to explore the mechanism mediating survival and differentiation of ADSCs in the transplanted microenvironment. AMP-activated protein kinase (AMPK) has been shown to be one of the energy receptors that regulate many aspects of cellular metabolism. AMPK activation has been implicated in models of adult ischemic injury, but the mechanism and the regulating effects of AMPK on survival and adipogenesis of transplanted ADSCs are still little known. In this study, we simulated the transplanted microenvironment using oxygen-glucose deprivation (OGD) to test the survival and adipogenesis of ADSCs. We found that OGD treatment triggered significant apoptosis and promoted autophagy. Simultaneously, OGD hindered the differentiation of ADSCs into mature adipocytes. After inhibiting AMPK, the OGD-induced apoptosis rate increased but autophagy was inhibited. The adipogenesis level also decreased. To show that the effects of AMPK on apoptosis and adipogenesis were autophagy-dependent, we pre-inhibited or pre-promoted autophagy with siATG7 or rapamycin while blocking AMPK. We found that inhibiting or improving autophagy exacerbated or alleviated the role of AMPK prohibition in apoptosis and adipogenesis. Furthermore, we showed that AMPK inhibition significantly lowered ULK1 activity but promoted mTOR activity, so that to inhibit autophagy. Our study shows that AMPK plays a protective role in maintaining survival and adipogenesis of OGD-challenged ADSCs partly by positively regulating autophagy. AMPK positively regulates autophagy by inhibiting mTOR but promoting ULK1 activity in OGD condition.  相似文献   

8.
In neurodegenerative diseases like Alzheimer's disease (AD), tau is hyperphosphorylated and forms aggregates and neurofibrillary tangles in affected neurons. Autophagy is critical to clear the aggregates of disease‐associated proteins and is often altered in patients and animal models of AD. Because mechanistic target of rapamycin (mTOR) negatively regulates autophagy and is hyperactive in the brains of patients with AD, mTOR is an attractive therapeutic target for AD. However, pharmacological strategies to increase autophagy by targeting mTOR inhibition cause various side effects. Therefore, autophagy activation mediated by non‐mTOR pathways is a new option for autophagy‐based AD therapy. Here, we report that pimozide activates autophagy to rescue tau pathology in an AD model. Pimozide increased autophagic flux through the activation of the AMPK‐Unc‐51 like autophagy activating kinase 1 (ULK1) axis, but not of mTOR, in neuronal cells, and this function was independent of dopamine D2 receptor inhibition. Pimozide reduced levels of abnormally phosphorylated tau aggregates in neuronal cells. Further, daily intraperitoneal (i.p.) treatment of pimozide led to a recovery from memory deficits of TauC3 mice expressing a caspase‐cleaved form of tau. In the brains of these mice, we found increased phosphorylation of AMPK1 and ULK1, and reduced levels of the soluble oligomers and NP40‐insoluble aggregates of abnormally phosphorylated tau. Together, these results suggest that pimozide rescues memory impairments in TauC3 mice and reduces tau aggregates by increasing autophagic flux through the mTOR‐independent AMPK‐ULK1 axis.  相似文献   

9.
We investigated the effects of puerarin, the major isoflavone in Kudzu roots, on the regulation of autophagy in ethanol-treated hepatocytes. Incubation in ethanol (100 mM) for 24 h reduced cell viability by 20% and increased the cellular concentrations of cholesterol and triglycerides by 40% and 20%, respectively. Puerarin stimulation significantly recovered cell viability and reduced cellular lipid accumulation to a level comparable to that in untreated control cells. Ethanol incubation reduced autophagy significantly as assessed by microtubule-associated protein1 light chain 3 (LC3) expression using immunohistochemistry and immunoblot analysis. The reduced expression of LC3 was restored by puerarin in a dose-dependent manner in ethanol-treated cells. The effect of puerarin on mammalian targets of rapamycin (mTOR), a key regulator of autophagy, was examined in ethanol-treated hepatocytes. Immunoblotting revealed that puerarin significantly induced the phosphorylation of 5′AMP-activated protein kinase (AMPK), thereby suppressing the mTOR target proteins S6 ribosomal protein and 4E-binding protein 1. These data suggest that puerarin restored the viability of cells and reduced lipid accumulation in ethanol-treated hepatocytes by activating autophagy via AMPK/mTOR-mediated signaling.  相似文献   

10.
mTOR是细胞生长和增殖的中枢调控因子。mTOR形成2个不同的复合物mTORC1和mTORC2。mTORC1受多种信号调节,如生长因子、氨基酸和细胞能量,同时,mTORC1调节许多重要的细胞过程,包括翻译、转录和自噬。AMPK作为一种关键的生理能量传感器,是细胞和有机体能量平衡的主要调节因子,协调多种代谢途径,平衡能量的供应和需求,最终调节细胞和器官的生长。能量代谢平衡调控是由多个与之相关的信号通路所介导,其中AMPK/mTOR信号通路在细胞内共同构成一个合成代谢和分解代谢过程的开关。此外,AMPK/mTOR信号通路还是一个自噬的重要调控途径。本文着重于目前对AMPK和mTOR信号传导之间关系的了解,讨论了AMPK/mTOR在细胞和有机体能量稳态中的作用。  相似文献   

11.
The human health hazards related to persisting use of bisphenol-A (BPA) are well documented. BPA-induced neurotoxicity occurs with the generation of oxidative stress, neurodegeneration, and cognitive dysfunctions. However, the cellular and molecular mechanism(s) of the effects of BPA on autophagy and association with oxidative stress and apoptosis are still elusive. We observed that BPA exposure during the early postnatal period enhanced the expression and the levels of autophagy genes/proteins. BPA treatment in the presence of bafilomycin A1 increased the levels of LC3-II and SQSTM1 and also potentiated GFP-LC3 puncta index in GFP-LC3-transfected hippocampal neural stem cell-derived neurons. BPA-induced generation of reactive oxygen species and apoptosis were mitigated by a pharmacological activator of autophagy (rapamycin). Pharmacological (wortmannin and bafilomycin A1) and genetic (beclin siRNA) inhibition of autophagy aggravated BPA neurotoxicity. Activation of autophagy against BPA resulted in intracellular energy sensor AMP kinase (AMPK) activation, increased phosphorylation of raptor and acetyl-CoA carboxylase, and decreased phosphorylation of ULK1 (Ser-757), and silencing of AMPK exacerbated BPA neurotoxicity. Conversely, BPA exposure down-regulated the mammalian target of rapamycin (mTOR) pathway by phosphorylation of raptor as a transient cell''s compensatory mechanism to preserve cellular energy pool. Moreover, silencing of mTOR enhanced autophagy, which further alleviated BPA-induced reactive oxygen species generation and apoptosis. BPA-mediated neurotoxicity also resulted in mitochondrial loss, bioenergetic deficits, and increased PARKIN mitochondrial translocation, suggesting enhanced mitophagy. These results suggest implication of autophagy against BPA-mediated neurodegeneration through involvement of AMPK and mTOR pathways. Hence, autophagy, which arbitrates cell survival and demise during stress conditions, requires further assessment to be established as a biomarker of xenoestrogen exposure.  相似文献   

12.
雌激素是子宫内膜癌发生发展的重要诱导因子,但关于其在子宫内膜癌中的作用机制目前仍不明确。自噬对细胞的存活具有重要的调节作用,研究发现其在子宫内膜癌发生发展的过程中起重要的调节作用。本文通过探讨雌激素对子宫内膜癌细胞自噬的影响,深入地了解雌激素促进子宫内膜发展的机制,并明确GPR30-MPK-mTOR 通路在其中的作用。MTT及透视电镜的结果显示,雌激素可以诱导细胞的自噬及增强细胞的活力,而这种作用具有一定的时间及浓度依赖性。同时,蛋白质印迹及实时定量PCR结果显示雌激素可以促进LC3、p-AMPK的表达,并且抑制P62、p-mTOR的表达,表明雌激素可以激活AMPK/mTOR通路。沉默G蛋白偶联受体30(GPR30)后,结果显示雌激素诱导细胞的自噬及细胞活力的作用被逆转,并且可以抑制AMPK/mTOR通路的激活,而G-1结果与之相反,表明雌激素通过GPR30激活AMPK/mTOR通路,诱导自噬及细胞活力。此外,加入AMPK抑制剂compound C,可以抑制雌激素诱导细胞的自噬及细胞活力的能力,并且促进P62、p-mTOR表达,降低LC3及p-AMPK表达,表明雌激素通过激活AMPK/mTOR激活细胞自噬及增强细胞活力。同时细胞预先加入自噬抑制剂3-MA或转染ATG5siRNA,可以降低雌激素增强细胞的活力,表明雌激素通过诱导自噬增强细胞活力。综合以上结果,雌激素通过GPR30-AMPK-mTOR通路诱导细胞的自噬增强细胞的活力。  相似文献   

13.
The association of AMPK with ULK1 regulates autophagy   总被引:1,自引:0,他引:1  
Lee JW  Park S  Takahashi Y  Wang HG 《PloS one》2010,5(11):e15394
Autophagy is a highly orchestrated intracellular bulk degradation process that is activated by various environmental stresses. The serine/threonine kinase ULK1, like its yeast homologue Atg1, is a key initiator of autophagy that is negatively regulated by the mTOR kinase. However, the molecular mechanism that controls the inhibitory effect of mTOR on ULK1-mediated autophagy is not fully understood. Here we identified AMPK, a central energy sensor, as a new ULK1-binding partner. We found that AMPK binds to the PS domain of ULK1 and this interaction is required for ULK1-mediated autophagy. Interestingly, activation of AMPK by AICAR induces 14-3-3 binding to the AMPK-ULK1-mTORC1 complex, which coincides with raptor Ser792 phosphorylation and mTOR inactivation. Consistently, AICAR induces autophagy in TSC2-deficient cells expressing wild-type raptor but not the mutant raptor that lacks the AMPK phosphorylation sites (Ser722 and Ser792). Taken together, these results suggest that AMPK association with ULK1 plays an important role in autophagy induction, at least in part, by phosphorylation of raptor to lift the inhibitory effect of mTOR on the ULK1 autophagic complex.  相似文献   

14.
10-hydroxycamptothecin (HCPT), a natural plant extract, exerts anticancer capacity. HCPT has been reported to induce apoptosis and autophagy in human cancer cells. The interaction between autophagy and apoptosis induced by HCPT and the molecular mechanism in bladder cancer cells were investigated in this study. Our results confirmed that HCPT suppressed cell viability and migration and caused cell-cycle arrest in T24 and 5637. Then, we used Z-VAD(OMe)-FMK to clarify that apoptosis induced by HCPT was mediated by caspase. Moreover, HCPT boosted autophagy through activating the AMPK/mTOR/ULK1 pathway. Blocking autophagy by 3-methyladenine, the adenosine monophosphate-activated protein kinase (AMPK) inhibitor dorsomorphin and siATG7 reversed HCPT-induced cytotoxicity. Conversely, rapamycin and the AMPK activator AICAR enhanced growth inhibition and cell apoptosis, suggesting that autophagy played a proapoptosis role. Taken together, our findings showed that HCPT-induced autophagy mediated by the AMPK pathway in T24 and 5637 cell lines, which reinforced the apoptosis, indicating that HCPT together with autophagy activator would be a novel strategy for clinical treatment in bladder cancer.  相似文献   

15.
Recently, it has been established that there is a direct link between adenosine monophosphate activated protein kinase (AMPK), which is an energy sensor and is activated by glucose starvation, and Unc-51-like kinase 1 (ULK1) in triggering autophagy. Proper phosphorylation of ULK1 is crucial for ULK1/AMPK association and subsequent ULK1 functions in response to nutrient deprivation. Signaling modulated via phosphorylation often involves a flexible/unstructured or an intrinsically disordered (ID) region of proteins. Structural analyses of the ULK1 protein suggest that most of its functionally important phosphorylation sites are located in an ID region. We propose that this ID nature facilitates AMPK-mediated phosphorylation of ULK1, which may provide a mechanism for ULK1 functions in response to nutrient deprivation. Understanding how an ID region of ULK1 modulates its post-translational modifications through AMPK in regulating allosteric coupling will significantly help in defining the cellular and molecular mechanisms involved in ULK1/AMPK functions and in regulation of autophagy.  相似文献   

16.
17.
Xanthoangelol (XAG), a prenylated chalcone isolated from the Japanese herb Angelica keiskei Koidzumi, has been reported to exhibit antineoplastic properties. However, the specific anti‐tumor activity of XAG in human hepatocellular carcinoma (HCC), and the relevant mechanisms are not known. Herein, we evaluated the effect of XAG against HCC in vitro and in vivo. Although XAG treatment did not significantly reduce the viability of the Hep3B and Huh7 cell lines, it suppressed cell migration, invasion, and EMT. This anti‐metastatic effect of XAG was due to induction of autophagy, because treatment with the autophagy inhibitor 3‐methyadenine (3‐MA) or knockdown of the pro‐autophagy Beclin‐1 effectively abrogated the XAG‐induced suppression of metastasis. Mechanistically, XAG induced autophagy via activation of the AMPK/mTOR signaling pathway, and XAG treatment dramatically increased the expression of p‐AMPK while decreasing p‐mTOR expression. In addition, blocking AMPK/mTOR axis with compound C abrogated the autophagy‐mediated inhibition of metastasis. The murine model of HCC metastasis also showed that XAG effectively reduced the number of metastatic pulmonary nodules. Taken together, our results revealed that autophagy via the activation of AMPK/mTOR pathway is essential for the anti‐metastatic effect of XAG against HCC. These findings not only contribute to our understanding of the anti‐tumor activity of XAG but also provide a basis for its clinical application in HCC. Before this study, evidence of XAG on HCC was purely anecdotal; present study provides the first comprehensive assessments of XAG on HCC metastasis and investigates its underlying mechanism. Results suggest that XAG exerts anti‐metastatic properties against HCC through inducing autophagy which is mediated by the activation of AMPK/mTOR signaling pathway. This research extends our knowledge about the antineoplastic properties of XAG and suggests that induction autophagy may represent future treatment strategies for metastatic HCC.  相似文献   

18.
Phosphoserine phosphatase (PSPH), a key enzyme of the l -serine synthesis pathway, has been involved in cancer progression and survival. However, limited evidence revealed the PSPH influence on hepatocellular carcinoma (HCC). Herein, we observed that PSPH expression was upregulated in both HCC tissues and cell lines, which was determined by western blotting. TCGA database showed that the PSPH protein levels were significantly upregulated and affected patient survival rates in HCC. Then gain- and loss-of-function manipulations were performed by transfection with a pcDNA-PSPH expression vector or a specific short interfering RNA against PSPH in Huh7 cells. Huh7 cell proliferation, stemness, invasion, and apoptosis were assessed by using CCK-8 test, colony formation assay, Transwell assay, and Flow cytometry analysis, respectively, and levels of autophagy-related proteins were detected by using western blotting. The results showed that PSPH could induce Huh7 cell autophagy, promote cell proliferation and invasion, and inhibit apoptosis. The knockdown of PSPH could inhibit Huh7 cell proliferation, invasion, and autophagy. Furthermore, PSPH activated Liver kinase B1 (LKB1) and TGF beta-activated kinase 1 (TAK1), affected the adenosine 5′-monophosphate-activated protein kinase (AMPK)/mTOR/ULK1 signaling pathway, but could not activate calcium/calmodulin-dependent protein kinase kinase (CaMKK) in Huh7 cells. Inhibition of either LKB1, TAK1, or AMPK could eliminate the effect of PSPH overexpression on Huh7 cell behaviors. However, inhibition of CaMKK could not influence the effect of PSPH overexpression on Huh7 cell behaviors. In conclusion, PSPH could induce autophagy, promote proliferation and invasion, and inhibit apoptosis in HCC cells via the AMPK/mTOR/ULK1 signaling pathway.  相似文献   

19.
G9a has been reported to highly express in bladder transitional cell carcinoma (TCC) and G9a inhibition significantly attenuates cell proliferation, but the underlying mechanism is not fully understood. The present study aimed at examining the potential role of autophagy in the anti-proliferation effect of G9a inhibition on TCC T24 and UMUC-3 cell lines in vitro. We found that both pharmaceutical and genetical G9a inhibition significantly attenuated cell proliferation by MTT assay, Brdu incorporation assay and colony formation assay. G9a inhibition induced autophagy like morphology as determined by transmission electron microscope and LC-3 fluorescence assay. In addition, autophagy flux was induced by G9a inhibition in TCC cells, as determined by p62 turnover assay and LC-3 turnover assay. The autophagy induced positively contributed to the inhibition of cell proliferation because the growth attenuation capacity of G9a inhibition was reversed by autophagy inhibitors 3-MA. Mechanically, AMPK/mTOR pathway was identified to be involved in the regulation of G9a inhibition induced autophagy. Intensively activating mTOR by Rheb overexpression attenuated autophagy and autophagic cell death induced by G9a inhibition. In addition, pre-inhibiting AMPK by Compound C attenuated autophagy together with the anti-proliferation effect induced by G9a inhibition while pre-activating AMPK by AICAR enhanced them. In conclusion, our results indicate that G9a inhibition induces autophagy through activating AMPK/mTOR pathway and the autophagy induced positively contributes to the inhibition of cell proliferation in TCC cells. These findings shed some light on the functional role of G9a in cell metabolism and suggest that G9a might be a therapeutic target in bladder TCC in the future.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号